
Model-Based Automated Generation

of User Interfaces

Angel R. Puerta, Henrik Eriksson, John H. Gennari, and Mark A. Musen

Medical Computer Science Group
Knowledge Systems Laboratory

Departments of Medicine and Computer Science
Stanford University

Stanford, CA, 94305-5479
{puerta,eriksson,gennari,musen}@camis.stanford.edu

ABSTRACT 1

User interface design and development for knowledge-
based systems and most other types of applications is a
resource-consuming activity. Thus, many attempts have
been made to automate, to certain degrees, the construction
of user interfaces. Current tools for automated design of user
interfaces are able to generate the static layout of an
interface from the application's data model using an
intelligent program that applies design rules. These tools,
however, are not capable of generating the dynamic
behavior of the interface, which must be specified
programmatically, and which constitutes most of the effort
of interface construction. Mecano is a model-based user-
interface development environment that uses a domain
model to generate both the static layout and the dynamic
behavior of an interface. A knowledge-based system
applies sets of dialog design and layout rules to produce
interfaces from the domain model. Mecano has been used
successfully to completely generate the layout and the
dynamic behavior of relatively large and complex, domain-
specific, form- and graph-based interfaces for applications
in medicine and several other domains.

INTRODUCTION
In recent years there has been significant progress in
providing automated assistance to user-interface
developers. Commercially available interface builders,
user-interface management systems, and interface toolkits
provide considerable savings to developers in time and in
effort needed to produce a new interface (deBaar, Foley, &
Mullet 1992).

Even with these commercial tools present, the amount of
effort and low-level detail involved in constructing
interfaces is substantial. Therefore, researchers are
investigating techniques to automate more portions of the
interface design process. One promising area is that of
model-based user-interface development (Puerta 1993;
Szekely, Luo, & Neches 1993). In this approach,

1. This work has been supported in part by grants LM05157
and LM05305 from the National Library of Medicine, and by
gifts from Digital Equipment Corporation. Dr. Musen is recipient
of NSF Young Investigator Award IRI-9257578.

developers work with high-level specifications (models) of
the interface to define dialog and layout characteristics.
Model-based systems facilitate the automation of interface
design tasks. A successful approach has been to use the
application’s data model to generate the static layout of an
interface (deBaar, Foley, & Mullet 1992; Janssen,
Weisbecker, & Ziegler 1993).

Figure 1. Generic framework for automated
interface-generation environments that employ data
models. The interface design is produced by tools
that examine a data model and a dialog specification.
The design may be represented implicitly or explicitly
(as an interface model). The run-time system
implements the design.

Figure 1 shows a generic framework for automated
interface generation environments that employ data
models. An intelligent design tool examines the data
model and applies a set of design rules to produce a static
design of an interface. Because the data model is shared
between the interface design and the target application
design, both designs can be coupled, and changes to the
application design can be propagated easily to the interface
design. The dynamic behavior of the interface, however,
must be specified separately. This process can take many
forms such as using a graphical editor to construct dialog
Petri nets (Janssen, Weisbecker, & Ziegler 1993), to
assigning sets of pre- and postconditions to each interface
object (Gieskens & Foley 1992). Although working with

Design
Tools

Run-Time
System

Data
Model

High-Level
Dialog

Specification

User
Interface

Interface
Model

(Design)

high-level dialog specifications is helpful to interface
developers, it does not automate the design of dynamic
behavior. For large interfaces, editing the dialog
specifications is still a time-consuming task involving the
definition of hundreds of actions and conditions, some of
which may conflict with each other.
The Mecano Approach
Current data-model approaches do not exploit the
relationships among objects in the model to generate the
dynamic behavior of an interface. In addition, a data model
is application-specific. In the Mecano approach, we aim to
use domain models from which dynamic interface behavior
can be generated, and that are also sharable across a range
of applications.

In this paper, we present Mecano, a model-based
interface development environment that uses domain
models instead of data models to generate interfaces. A
domain model is a high-level knowledge representation
that captures all the definitions and relationships of a given
application domain. A domain model extends the data
model for the application. By substituting the data model in
Figure 1 for a domain model, Mecano does not require any
dialog specification editing and can generate complete
dynamic behavior specifications even for large interfaces
with hundreds of components.

The rest of this paper is organized as follows. We first
review related work and present an overview of Mecano,
including a definition and illustration of domain models.
Then, we show how various cases of dynamic behavior can
be generated from domain models by using an example
from the medical domain. Next, we explain how end users
are able to participate in the layout design of interfaces
generated in Mecano and how design revisions can be
conducted. We conclude by analyzing this approach and
summarizing the results.
RELATED WORK
There are three types of systems documented in literature
that relate closely to the Mecano approach: (1) systems that
use textual specifications to generate dialogs, (2) systems
that combine the use of data models and high-level dialog
specifications, and (3) systems that directly manipulate an
interface model to produce an interface.

One of the earliest efforts to generate dialogs via textual
descriptions is COUSIN (Hayes and Szekely 1992). It
generates menus and fill-in forms from a specification of
commands and their parameters. Mickey (Olsen 1989) uses
an extended version of Pascal to describe contents,
parameters, and behavior of direct-manipulation of interfaces.
ITS (Wiecha et al. 1989) separates dialog and style into two
different layers and allows the specification of the dialog
layer through a command language and the definition of
styles through a rule set. Given the textual description for a
dialog, ITS reasons about the style rule set to generate the

interface. The UofA* (Singh and Green 1991) system
generates the presentation and dialog through a command
language. These systems, in general, help the developer by
providing tools to design dialogs at a high-level of
abstraction, but they do not automate the design process
beyond that point.

Among the first examples of the use of data models to
derive static layouts for interfaces is HIGGENS (Hudson
and King 1986). It allows a developer to view abstractly
the interface by examining the data models, but it lacks an
automatic generator for the actual interface.

The UIDE environment includes a tool for static layout
generation from an extended data model (deBaar, Foley, &
Mullet 1992). The specification of dynamic behavior,
however, must be achieved by defining sets of pre- and
postconditions (Gieskens and Foley 1992) for each one of
the interface objects. The GENIUS environment (Janssen,
Weisbecker, & Ziegler 1993) uses an entity–relationship
data model along with a graphical editor for dialog
specifications to generate interfaces. The data model,
which can be edited graphically, provides the basis for the
definition of the interface components and their layout.
The graphical editor allows the review of dialog nets, a
variation of Petri nets, that define the actions of the
interface objects and the conditions that preclude or follow
those actions.

Systems that employ data models have the advantage of
sharing the data model with the target application, thus
coupling the design of both. They cannot automate
dynamic dialog design from the data model and have
problems scaling up because of their approach to
specifying dialogs. For example, the use of pre- and
postconditions in large interfaces can cause conflicts
among the conditions and may necessitate the development
of conflict-resolution strategies.

Systems that generate interfaces by manipulating
interface models include HUMANOID (Szekely, Luo, &
Neches 1993) and DON (Kim and Foley 1993).
HUMANOID defines an elaborate interface model that
includes components for the application, the presentation,
and the dialog. Developers construct application models
and HUMANOID picks among a number of templates of
interfaces to display the interface. The developer can then
refine the behavior of the interface by editing the dialog
model. HUMANOID assists, but does not automate, the
generation of dynamic behavior specifications, and
requires considerable additional developer effort to
generate interfaces that do not conform to its templates, as
is the case with most complex interfaces. DON uses a
presentation model that allows developers to explore
designs and that provides expert assistance in the
generation of designs. DON does not have a dynamic
behavior component for automatic generation of dialogs.

Figure 2. The main components of Mecano. The
intelligent designer operates on a domain model, as
opposed to a data model, to produce interface designs.

OVERVIEW OF MECANO
The main components of the Mecano environment are
shown in Figure 2. Mecano follows the general
architecture of Figure 1, replacing the data model with a
domain model. The design tools include a model-editing
tool, an intelligent designer tool, and an interface builder,
which in our case is provided by the supporting platform,
the NeXT environment.

The framework for user-interface development with
Mecano calls for a developer to start by employing the
model editor (Gennari 1993) to visualize and review a
domain model (described later in this paper). The domain
model is shared with the target application. Therefore, an
interface developer need not build one for a given domain
from scratch. Instead, the normal process is to revise an
existing one. Once a domain model is deemed satisfactory,
it is input to the intelligent designer (Eriksson, Puerta, &
Musen 1994), a tool that produces a dynamic dialog
specification and a preliminary layout for the interface.
The layout can then be refined using NeXT’s Interface
Builder. Both the dialog and layout output by the
intelligent designer are stored declaratively in an interface
model. This model contains all facets of an interface
design including interface objects, presentation, dialog,
and behavior.

The design defined in the interface model is implemented
by a run-time system. Mecano’s run-time tools have the
capability of implementing form- and graph-based
interfaces with many types of objects, from simple ones,
such as menus and push-buttons, to complex ones, such as
list browsers and domain-specific graphical editors. The
run-time tools implement the dynamic behavior of the
interface according to the specifications in the interface
model.

The overall design process in Mecano is iterative. The
resulting interfaces may have deficiencies that require

editing the domain model and regenerating the interface.
In such cases, the intelligent designer keeps track of layout
customizations that may have been made in the previous
generation and reapplies these customizations as
appropriate.

Figure 3. Partial view of a medical domain model for
therapy (protocol) administration (IS-A view). The
hierarchy of classes is used to generate the interface-
navigation schema for windows and other objects.

Figure 4. Partial view of the slots and facets (proper-
ties) for the chemotherapy class. Facets can define
allowed-classes relationships among classes. These
relationships are used to generate specifications for
interface-object groupings in windows. Other facets
like type are important to determine static layout (e.g.,
appropriate widget for a type string object)

Domain Models
A domain model is a representation of the objects in a
domain and their interrelationships. Domain models in
Mecano are constructed using a frame-based representation
language that defines class hierarchies (Gennari 1993).
Each class in the hierarchy can have a number of slots and
each slot defines a number of properties (called facets)
Figures 3 and 4 show partial views of a model for the
medical domain of therapy administration (called protocol
administration).

There are two important relationships in domain models.
The is-a relationship (see Figure 3) determines the class
hierarchy and is used by the intelligent designer in Mecano
to specify the interface-navigation schema among windows
and other objects. The part-of relationship (see Figure 4) is

Interface
Builder

Model
EditorIntelligent

Designer

Design Tools

Domain
Model

Interface
Model

Models

User
Interface

Run-Time
System

User
InterfaceUser

Interface

DrugPrescription

Follow-Up

Regimen

Chemotherapy

Protocol

IS-A

Chemotherapy

Slots Facets

(allowed-classes
 :drug)

(type :string)

Drug_Parts

Algorithm

Name

used to determine object groupings by windows. Other
important facets include, for example, type, cardinality,
min and max of a slot, which are used in the specification
of the static layout (e.g., what widget should be used for the
slot; size of a numeric input field). In fact, the application’s
data model is completely included in the domain model.
Therefore, all the design rules of an intelligent design tool
that may be applied to a data model can be applied to a
domain model. In the next section, we illustrate the use of
domain models to generate a therapy administration
application.
GENERATION OF DIALOG SPECIFICATIONS FROM
DOMAIN MODELS

Before dialogs can be generated, a domain model must
be prepared with the model editor shown in Figure 5. The
domain model is shared with the target application. Thus, a
coupling of application design and interface design is
established. Developers can build domain models
incrementally, and can prototype interfaces early in the
development process because Mecano supports iterative
design. More importantly, it is not necessary to build

domain models from scratch for every application. A
domain model for medical therapy planning can be reused,
with minor variations, in other applications. This is a
significant advantage of Mecano over systems that design
from data models because data models are difficult to reuse
across applications.

Once edited, the domain model is used to generate dialog
specifications. These specifications have two levels in
Mecano:.

• High-level dialog defines all interface windows,
assigns interface objects to windows, and specifies the
navigation schema among windows in the interface.

• Low-level dialog defines specific dialog elements
(widgets) to each interface object created at the high
level and specifies how the standard behavior of the
dialog element is modified for the given domain.

High-Level Dialog Generation
The elements of the high-level dialog specification are
generated by examining the class hierarchy of the domain

Figure 5. Editing the domain model. Using browsers and inspectors, the developer can specify the class hierarchy (top
window) and the slots and facets (properties) of each class.

model (see Figure 3) and the slots of each class (see
Figure 4). Figure 6 shows an interface generated from the
partial domain model shown in Figures 3, and 4. The
complete medical domain model for therapy administration
generates an interface with over 60 windows and hundreds
of widgets. Note that the dialog for window navigation is
established during high-level dialog design but that it can
be refined, or augmented, at low-level dialog design time.
The procedure to generate a high-level dialog design is as
follows:

• Each class in the hierarchy is assigned a window.

• Window navigation is established by searching the
class hierarchy for links indicated by the allowed-
classes facet in the domain model. For example, the
Drug window shown in Figure 6 is accessed from the
Chemo window because the Drug class is an allowed
class for the slot Drug_Part.

• Each window is assigned one interface object per
slot in the class. After generation, the developer has the
option of customizing the interface by splitting
windows multiple objects into two or more windows.
Interface objects are assigned actual widgets during
low-level dialog design.

Low-Level Dialog Generation
Elements of the low-level dialog specification are

generated by examining the facets (properties) defined for
each slot in the domain model (see Figure 4). The process
has these steps:

• Each interface object defined at high-level design
time is assigned a dialog element (widget) by
examining the facets of the corresponding slot in the
domain model. For example an object of type string is
assigned a text field, an object of type Boolean is
assigned a check-box widget, and an object of type

Figure 6. Interface generated from the partial domain model in Figures 3 and 4. Legends indicate generated dialog at
high- and low-level design times. An interface generated from the full domain model for medical therapy contains over
60 windows and hundreds of dialog elements (widgets). The dynamic behavior of such interface can be generated
automatically from a domain model.

Display
Graphical
Editor

Display Window

Interface Objects
from Protocol
Class Slots

Update After User Input

High-Level Dialog Design

Low-Level Dialog Design

Window for
Protocol Class

string and cardinality multiple (i.e., the object can be
multiple-valued) is assigned a list browser.

• Each dialog element may be assigned actions
beyond the standard behavior of the dialog element by
examining the facets of the corresponding slot in the
domain model. Examples of dialog-element actions
include disabling editing in other dialog elements, and
updating values in other dialog elements after a user
input action (see Figure 6).

Note that the specification of dialog-element actions is
one of the important operations that cannot be automated in
systems that rely on data models for interface generation.
GENERATION OF DOMAIN-SPECIFIC GRAPHICAL
EDITORS
One of the important capabilities in Mecano is the
generation from domain models of domain-specific,
nodes-and-links graphical editors useful to describe
procedures such as flowcharts. Consider the following slot
information for the class Protocol:

(slot algorithm
(type :procedure)
(allowed-classes :xrt :chemotherapy :drug))

When the intelligent dialog designer examines this slot
during low-level dialog design, it assigns a graphical editor
as the dialog element for that slot due to the type procedure
defined for that slot. It also defines three graphical objects
to be used during editing, one for x-ray therapies (xrt), one
for chemotherapies (chemo), and one for drugs. Figure 7
shows a graphical editor generated from the above slot
definition.
PARTICIPATORY LAYOUT DESIGN AND DESIGN
REVISION

A crucial concern with any system that automatically
generates interfaces is how it allows the developer to
review and change the generated design. In Mecano, there
are two types of revisions: layout and dialog.

The intelligent designer tool uses a layout algorithm to
produce a preliminary layout of the interface objects. The
philosophy in Mecano is to be able to involve the end user
in the process of custom-tailoring a layout. For example,
for the medical treatment application shown in this paper,
the interface developer works together with a physician to
review and custom tailor the preliminary layout with an
interface builder (see Figure 2). Our experience is that this
revision—in the case of the interface derived from the full
model—may take between two and a half to four hours for
the 65 windows included in that application (including
layout and dialog revisions, and needed interface
regenerations). Custom-tailoring information is kept on a
database so that if the interface needs to be regenerated
because of incremental changes to the domain model (as it

is often the case), the customizations can be reapplied to the
newly generated interface. Substantial revisions of the
domain model, however, invalidate the information on the
customization database.

The working sessions with the end user—in this paper’s
example, a physician—are also used to discover difficulties
with the dialog design and incompleteness in the
information displayed in the interface. Dialog design
customizations can be made by editing directly the
interface model (see Figure 2) and do not require a
regeneration of the interface. On the other hand, for the
interface to be able to display additional dialog elements,
changes must be made to the domain model to define
needed slots or classes. Such changes do require the
interface be regenerated. Overall, the Mecano policy is to
understand the interface design process as iterative and to
support the introduction of custom changes without
creating duplicate work.
ANALYSIS AND CONCLUSIONS
We have described a user-interface development
environment that generates automatically presentation and
dialog specifications for domain-specific, form- and graph-
based interfaces. The strong points of this system are:

• Generation of both the static layout and the dynamic
behavior of domain-specific, form- and graph-based
interfaces, including relatively large and complex
ones, for multiple domains (e.g., medical treatment,
elevator configuration).

• Use of the application’s domain models, which
includes the application’s data model, for interface

Figure 7. A graphical editor to draw medical
treatments generated from a domain model. Both the
drawing objects and their connectivity behavior are
determined by the intelligent designer tool in
Mecano.

generation considerably augments automation
capabilities over systems utilizing only a data model.

• Support of participatory layout design involving end
users of the applications, and support for iterative
design without duplication of work.

Mecano has the same central weakness that other model-
based systems have: the system is as good as the
expressiveness of its underlying models. We continue
researching extensions to our frame-based representation
language for domain models and interface models in order
to be able to automate more types of dialog actions. In
particular, we are concerned with how to generate complex
sequences of actions (commands) at low-level dialog
design time. We are also working on the run-time system
of Mecano to implement new types of widgets.
Furthermore, the interface generation approach from
domain models is most useful for domain-specific
interfaces with a relatively fixed user dialogue (such as the
medical forms shown in the figures in this paper). For other
types of interfaces, it will be necessary to examine other
types of models (such as a model of the user’s task) to be
able to generate automatically interface specifications. We
are currently working on developing such task models as
components of our generic interface model.

Overall, Mecano provides a framework for assisting the
development of interfaces and for the study of interface
models and the relationships between domain
characteristics and user interface presentation and dialog.
ACKNOWLEDGMENTS
We wish to thank Tom Gruber for his helpful comments.
REFERENCES
de Baar, D.J.M.J., Foley, J.D. and Mullet, K.E. 1992.
Coupling Application Design and User Interface Design.
In Proceedings of Human Factors in Computing Systems,
CHI’92. Monterey, California, May 1992, pp. 259–266.

Eriksson, H., Puerta, A.R. and Musen, M.A. 1994.
Generation of Knowledge-Acquisition Tools from Domain
Ontologies. In Proceedings of the Eighth Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop.
Banff, Alberta, Canada. pp. 7.1–7.20.

Gennari, J.H. 1993. A Brief Guide to Maître and MODEL:
An Ontology Editor and a Frame-Based Knowledge
Representation Language. Stanford University,
Knowledge Systems Laboratory, Report KSL-93-46,
Stanford, California. June 1993.

Gieskens, D.F. and Foley, J.D. 1992. Controlling User
Interface Objects through Pre- and Postconditions. In
Proceedings of Human Factors in Computing Systems,
CHI’92. Monterey, California, May 1992, pp. 189–194.

Hayes, P. and Szekely, P. 1992. Graceful Interaction
through the {COUSIN} Command Interface. International
Journal of Man–Machine Studies, 19(3), pp. 285–305.

Hudson, S.E. and King, R. 1986 A Generator of Direct
Manipulation Office Systems. ACM Transactions on
Information Systems, 4(2), pp. 132–163.

Janssen, C., Weisbecker A. and Ziegler J. 1993.
Generating User Interfaces from Data Models and dialog
Net Specifications. In Proceedings of Human Factors in
Computing Systems, INTERCHI’93. Amsterdam, The
Netherlands, April 1993, pp. 418–423.

Kim, W.C. and Foley, J.D. 1993. Providing High-Level
Control and Expert Assistance in the User Interface
Presentation Design. In Proceedings of Human Factors in
Computing Systems, INTERCHI’93. Amsterdam, The
Netherlands, April 1993, pp. 430–437.

Olsen, D.R. 1989. A Programming Language Basis for
User Interface Management. In Proceedings of Human
Factors in Computing Systems, CHI’89. Austin, Texas,
May 1989, pp. 171–176.

Puerta A.R. 1993. The Study of Models of Intelligent
Interfaces. In Proceedings of the 1993 International
Workshop on Intelligent User Interfaces. Orlando, Florida,
January 1993, pp. 71–80.

Singh, G. and Green, M. 1991. Automating the Lexical
and Syntactic Design of Graphical User Interfaces: The
UofA* UIMS. ACM Transactions on Graphics, 10(3), pp.
213–254.

Szekely, P., Luo, P. and Neches, R. 1993. Beyond Interface
Builders: Model-Based Interface Tools. In Proceedings of
Human Factors in Computing Systems, INTERCHI’93.
Amsterdam, The Netherlands, April 1993, pp. 383–390.

Wiecha, C., Bennett, W., Boies, S., Gould, J. and Greene,
S. 1989. ITS: A Tool for Rapidly Developing Interactive
Applications. ACM Transactions on Information Systems,
8(3), pp. 204–236.

