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Abstract

Problem-solving methods for knowledge-based systems establish the behavior of such

systems by de�ning the roles in which domain knowledge is used and the ordering of

inferences. Developers can compose problem-solving methods that accomplish complex

application tasks from primitive, reusable methods. The key steps in this development

approach are task analysis, method selection (from a library), and method con�guration.

Prot�eg�e-ii is a knowledge-engineering environment that allows developers to select and

con�gure problem-solving methods. In addition, prot�eg�e-ii generates domain-speci�c

knowledge-acquisition tools that domain specialists can use to create knowledge bases

on which the methods may operate.

The board-game method is a problem-solving method that de�nes control knowledge

for a class of tasks that developers can model in a highly speci�c way. The method

adopts a conceptual model of problem solving in which the solution space is construed

as a \game board" on which the problem solver moves \playing pieces" according to

prespeci�ed rules. This familiar conceptual model simpli�es the developer's cognitive de-

mands when con�guring the board-game method to support new application tasks. We

compare con�guration of the board-game method to that of a chronological-backtracking

problem-solving method for the same application tasks (for example, Towers of Hanoi

and the Sisyphus room-assignment problem). We also examine how method design-

ers can specialize problem-solving methods by making ontological commitments to cer-

tain classes of tasks. We exemplify this technique by specializing the chronological-

backtracking method to the board-game method.
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1 Reusable Components for Knowledge Engineering

During the past decade, developers of knowledge-based systems have realized that the rep-

resentations that they use to encode expertise at the level of rules or frames do not provide

su�cient abstraction for the design of large, complex systems. During this period, researchers

have begun to consider frameworks that can capture the behaviors of such systems more ab-

stractly than can rules and frames. Chandrasekaran [2; 3], for example, has proposed the use

of domain-independent problem-solving methods, or generic tasks, for typical problems as a

basis for the design of knowledge-based systems. Clancey [5] has analyzed retrospectively sev-

eral rule-based systems, and has identi�ed an inference structure for heuristic classi�cation.

McDermott and his colleagues have developed a series of special-purpose problem solvers with

corresponding knowledge-acquisition tools [29]. In their approach, the problem solvers use

di�erent role-limiting problem-solving methods as the reasoning strategy. For instance, vt

[26] uses a propose-and-revise method for accomplishing the task of elevator con�guration,

and mole [14] uses a cover-and-di�erentiate method for classi�cation. Such methods make

use of limited knowledge roles in the sense that they identify explicitly the di�erent ways in

which the problem solver uses inferences from the knowledge base. If the developer can use a

preexisting role-limiting method, the role-limiting approach reduces the development task to

one of identifying what domain knowledge is required to �ll each role.

The role-limiting approach, however, assumes that the problem-solving behavior of a

knowledge-based system can be de�ned in domain-independent terms [29]. For role-limiting

methods to be reusable across application domains, they must be general, which often means

that it is di�cult to match a method with a particular application task, because there can be a

signi�cant semantic gap between a general method and an application task. Problem-solving

methods designed by researchers and developers cannot easily be used for other purposes, or

be reused in other similar projects [33]. Current research in knowledge sharing and reuse pro-

ceeds along two avenues: reusable ontologies (which de�ne concepts and their relationships)

and reusable problem-solving methods (which de�nes operations for problem solving) [37].

Currently, our research is primarily concerned with reusable components for the operational

aspects of knowledge-based systems|that is, reusable problem-solving methods.

Identifying the task of the knowledge-based system is an important �rst step toward �nding

an appropriate problem-solving method. In this context, a task is the real-world activity that

the knowledge-based system should accomplish. Developers must identify, at least partially,

the task of the system they are designing before they can select and custom tailor preexisting

methods. This task analysis leads to a system-role description in terms of the domain for the

system, which serves as the basis for the selection of problem-solvingmethods that accomplish

the task [21; 28], and for the con�guration of the methods selected for the task instance. Many

researchers have pointed out similarities among application domains, and among the methods

that can be used for problem solving in these domains [5; 20; 23; 29; 32; 44]. Increasingly,

these researchers have noted that such similarities can be used as a foundation for developing

reusable methods and other reusable components for knowledge-based systems [3; 4; 28; 32;

39; 44]. One of the most important lessons learned from the work discussed is the importance

of the developers' conceptual models of problem solving for method reuse. In Sections 1.1

through 1.3, we shall provide a brief historic background to our work, and shall introduce the

work on reusable problem-solving methods presented in this article.
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1.1 Development Environments: Background

In the mid-1980s, our laboratory developed opal [34], a domain-speci�c knowledge-acquisition

tool that allows physicians to enter cancer-treatment plans for the oncocin therapy advisor

[47]. The principal advantage of tools such as opal is that they are custom tailored pre-

cisely for the application task and for the problem-solving method used to accomplish that

task. The major weakness of domain-speci�c tools, however, is that they are useful for de-

veloping systems in only one domain. To remove this limitation, we developed the metatool

prot�eg�e [30; 31], which allows developers to generate knowledge-acquisition tools similar

to opal for other application domains. Prot�eg�e supports the generation of knowledge-

acquisition tools for the role-limiting problem-solving method used by oncocin|episodic

skeletal-plan re�nement [47]. Although prot�eg�e demonstrated the feasibility of automated

generation of knowledge-acquisition tools from instantiation of the data requirements of a

method, prot�eg�e cannot support the development of knowledge-based systems that require

problem-solvingmethods other than skeletal-plan re�nement [35]. Recognizing the limitations

of a single problem-solving method, we are designing prot�eg�e-ii, a system that supports

more general task-oriented knowledge engineering [38; 39].

1.2 Tasks and Problem-Solving Methods in PROT�EG�E-II

The prot�eg�e-ii system provides a knowledge-engineering environment in which the developer

can specify tasks, and can select problem-solving methods from a library of reusable methods.

The prot�eg�e-ii approach distinguishes between tasks and problem-solving methods [32; 38].

Tasks are real-world functions that the knowledge-based system is supposed to discharge.

Examples of such tasks follow: (1) given a set of symptoms for a faulty device (e.g., manual

observations and instrument readings), produce a diagnosis and a remedy; (2) given an initial

state and a goal, produce a plan (i.e., a series of operations) that will accomplish the goal;

and (3) maintain at steady values certain measurements and indicators of a manufacturing

process over time (i.e., control). In the prot�eg�e-ii approach, the developer analyzes the

application task manually, and uses the prot�eg�e-ii system to identify appropriate methods

in the library and to con�gure the methods to perform the task.

Problem-solving methods can be seen as abstract models of how to solve certain problems

[29]. In prot�eg�e-ii, methods are actions that accomplish tasks. Examples of such problem-

solving methods are (1) state-space search by chronological backtracking, (2) classi�cation

(e.g., classi�cation of faults given symptoms), (3) reactive planning [7; 16], (4) skeletal-plan

re�nement [47], (5) temporal abstraction [42; 43], and (6) propose-and-revise methods for

con�guration [26]. Often, a speci�ed task can be accomplished by several methods. For

instance, we can perform troubleshooting tasks by matching and classifying faults, or by using

model-based reasoning. The selection of a method may depend on factors beyond the task

speci�cation, such as availability of expertise, time and space requirements for computations,

and compatibility with other cooperating methods.

Methods can delegate problems as subtasks to be solved by other methods. We use the

term mechanism for primitive methods that cannot be decomposed into subtasks (Figure 1).

Methods solve the problem imposed by their task, and methods may pose new subtasks in the

process of accomplishing the overall task. Because mechanisms are capable of accomplishing

the task without delegation, the developer can regard the mechanisms as black boxes that

cannot be decomposed further.
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task specification

subtask specification

problem-solving
method

mechanism
(b) configured problem solver(a) problem solver under configuration

task outputtask input

Figure 1: Tasks and methods. (a) The relationships among task speci�cations, methods,

subtask speci�cations, and mechanisms in prot�eg�e-ii. (b) The con�gured problem solver

during execution of the target knowledge-based system.

The performance of knowledge-based systems is critically dependent on the domain ex-

pertise available to the problem solver. For example, methods for heuristic classi�cation rely

on domain-speci�c classi�cation knowledge. Knowledge acquisition from domain experts is

an important technique for the development of such knowledge bases. Knowledge-acquisition

tools based on strong domain models provide environments in which experts can enter know-

ledge according to a conceptual model of the domain [8; 10; 11; 12; 34]. In addition to

supporting the development of problem solvers for knowledge-based systems, prot�eg�e-ii

generates domain-speci�c knowledge-acquisition tools that elicit the expertise required by the

problem-solvingmethods to perform the latter's tasks. Figure 2 shows the overall architecture

of the prot�eg�e-ii environment.

1.3 A Study in Method Reuse

The ultimate goal of our work is to develop techniques for real-world method reuse. Because

it is di�cult to explore various approaches to method reuse for full-scale systems, we study

principles for reuse on well-de�ned, standard problems. In particular, we focus on the de-

scription and representation of problem-solving methods, and on the process of method reuse.

In the following discussion, we shall use two exemple problems to illustrate task modeling,

method selection, and method con�guration. In addition to analyzing modeling of these prob-

lems, we examine how well methods map onto the domain tasks, and how reusable methods

support the developer. In particular, we compare several problem-solving methods for the

towers-of-Hanoi task, such as state-space search by chronological backtracking and the classic

recursive solution (recursive-task decomposition). We present a board-game method that can

solve a class of problems in which playing pieces move between board locations under certain

constraints. This method embraces board games as a conceptual model for developers to un-

derstand the problem-solving strategy employed by the method, and as a model for method

con�guration. Although we use these methods to model small-scale tasks, we believe that
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domain-specific knowledge-
acquisition tool

domain ontology

method manager
knowledge-acquisition-

tool designer

knowledge
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method
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target application system

problem-solving method

Figure 2: The architecture of the prot�eg�e-ii development environment. Development tools

are shown as rectangles. The developer uses the method manager to retrieve methods from

the method library, and to con�gure the methods for their tasks [38]. Moreover, the devel-

oper uses the knowledge-acquisition-tool designer to generate a domain-speci�c knowledge-

acquisition tool, which elicits the appropriate domain knowledge, and generates knowledge

bases for the problem-solving methods [13]. The developer uses an ontology editor to create

domain ontologies, which are used by the method manager and the knowledge-acquisition-

tool designer. The target application system consists of con�gured problem-solving methods,

domain ontologies, and appropriate knowledge bases.
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many of the principles for reuse applied here can be used ultimately for realistic problem

domains.

The remainder of this article is organized as follows. Section 2 presents problem de�ni-

tions and task analyses of two example problems: the towers-of-Hanoi and Sisyphus room-

assignment problems [25]. In Section 3, we discuss the selection of a problem-solving method

for a task. Section 4 examines con�guration of methods for new tasks. In Section 5, we

discuss the relationship between ontologies and problem-solving methods. Section 6 discusses

the knowledge acquisition required for these method con�gurations. In Section 7, we present

the results from this examination of reuse of problem-solving methods; in Section 8 we discuss

related work. Section 9 summarizes and presents the conclusions of the article.

2 Task Analysis and Example Tasks

Each time that developers are confronted with a new task, they must understand and model

the task before they can select and con�gure a reusable problem-solvingmethod. Task analysis

is a modeling activity; the designer identi�es the problem, as well as the inputs and outputs

of the problem-solving process. The result of the task analysis can be a formal problem

speci�cation; more often, it is an initial informal description of the problem that can be used

as a basis for identi�cation of an appropriate problem-solving method.

Once the developers have analyzed the task to a point where the input{output relationship

and the knowledge available are identi�ed, they can form a hypothesis about the appropriate

methods. Task analysis, however, does not stop where method selection begins. Task analysis

is a continuous activity in the sense that the developers must be prepared to revise and extend

their model of the task as they gain more insight into the problem. For example, method

selection might reveal that the developers have incomplete knowledge of the task, and that

they must continue analyzing the task, because their candidate problem-solvingmethod needs

additional knowledge.

The details of the task-analysis process are beyond the scope of this discussion, but there

are many approaches to task analysis described in the literature. One of the most prominent

approaches is kads [49], which provides a layered framework for models of expertise. The

result of the classic kads methodology is not an executable system, but rather is a conceptual

model of expertise. There is signi�cant ongoing work that involves the formalization of kads

models, and the implementation of executable kads models [15; 19].

We shall use the towers-of-Hanoi problem and the Sisyphus room-assignment problem as

the main illustrative examples. The towers-of-Hanoi task is an artifact, whereas the room-

assignment task represents a problem class somewhere in between arti�cial and realistic tasks.

We shall provide the result of our task analysis for the towers-of-Hanoi and room-assignment

problems as a background to the following sections on method selection and con�guration.

2.1 The Towers of Hanoi Task

The towers-of-Hanoi task is interesting as a case study of a tradeo� of space and time resources

with more task-speci�c knowledge. It demonstrates several possible task-level indices that can

be used to select candidate problem-solvingmethods from a library. These indices characterize

di�erent dimensions of the problem and of its potential solutions.
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(a) (b)

Figure 3: The classical three-disk towers-of-Hanoi problem. (a) The initial state. (b) The

goal state.

The towers-of-Hanoi problem is a game in which pieces move between locations. In the

towers-of-Hanoi game, there are k locations, called pegs. There are n pieces, called disks. The

disks reside at the pegs, and can move between pegs. A move operation consists of popping

one disk from one location's stack and pushing it onto another location's stack. Disks have

various sizes, and a local con�guration constraint stipulates that disks in every location must

form a tower ordered by size, the largest disk being on the bottom, the smallest on top. The

initial and goal con�gurations can be arbitrary. In what we shall call the classic version of

the towers-of-Hanoi problem (shown in Figure 3), there are three pegs, and the initial and

goal con�gurations are tower con�gurations.

Two important parameters that developers must resolve during the task analysis are the

premise and the result of the task (i.e., the run-time input and output of a problem solver

that accomplishes the task). The potential inputs to a problem solver for the classic version

are the number of disks n. Alternative formulations of the game allow arbitrary initial and

goal states by assuming that these states are input to the problem solver, or allow any number

k of pegs. Moreover, if we generalize the game de�nition further, certain constraints on the

game can be input to the problem solver. In the classic version, and in most alternative

formulations of the game, the result sought is a plan|that is, a sequence of moves that takes

the board from its initial state to its goal state. Also, if the goal of the game is expressed as

a predicate, rather than as an explicit state, the �nal state can be part of the result. The

speci�c input-and-output requirements of the task depend, of course, on the context in which

the problem solver will be used, such as the user community. Nevertheless, these input-and-

output requirements determine what assumptions the problem-solving methods can make,

and, therefore, what methods we can use to accomplish the task.

2.2 The Sisyphus Room-Assignment Task

The Sisyphus1 room-assignment task is a standard task that is used by researchers in know-

ledge acquisition and reusable problem-solvingmethods to compare their modeling approaches

[25]. Thus, the primary purpose of the Sisyphus problem formulation is to compare di�er-

ent approaches; it is not to �nd the best solution to the problem per se. The methods

that researchers have used to model the Sisyphus room-assignment task range from repeated

application of heuristic classi�cation to simulated annealing [25].

1The Sisyphus experiment to compare di�erent approaches to knowledge acquisition is named after the

legendary king of Corinth, who was condemned to roll continuously a heavy rock up a hill in Hades, only to
have the rock roll down again.
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Table 1: Excerpt from the Sisyphus problem-solving transcript [25]. Source: The Sisyphus

problem statement by Marc Linster, Digital Equipment Corporation; used with permission.

Step Words of the expert Annotations

1. Put Thomas D. into

room C5-117

The head of group needs a central room, so that he is as

close to all the members of the group as possible. It should

be a large room. This assignment is de�ned �rst, as the

location of the room of the head of group restricts the pos-

sibilities of the subsequent assignments.

2. Put Monica X. and

Ulrike U. into room

C5-119

The secretaries' room should be located close to the room

of the head of the group. Both secretaries should work

together in one large room. This assignment is executed

as soon as possible, as its possible choices are extremely

constrained.

3. Put Eva I. into C5-116 The manager must have maximum access to the head of the

group and to the secretariat. At the same time, she should

have a centrally located room. A small room will do. This

point is the earliest one at which this decision can be made.

In essence, the task is to assign persons to o�ce rooms under certain constraints. A

research group is moved to a new location, and rooms must be assigned to persons. The role

of the knowledge-based system is to allot rooms to persons in the group given information

about the sta�, descriptions of the rooms, and a set of constraints. Individuals have their own

professional characteristics and personal preferences (e.g., professional role, current project, or

use of tobacco). The information available at run time consists of a set of person descriptions

and a set of room descriptions.2 In the Sisyphus problem description [25], a document widely

circulated in the knowledge-acquisition community, knowledge is expressed as a transcript

of a problem-solving session, during which a human expert assigns persons to rooms. Each

assignment step is explained by a brief comment in natural language (see Table 1 for an

excerpt of the transcript). Figure 4 shows a sample 
oor plan. Tables 2 and 3 show attributes

for persons and rooms derived from the Sisyphus problem de�nition.

Even for a relatively simple task, such as the room-assignment problem, many design

decisions must be made in the task-analysis phase. The role of a knowledge-based system in

this domain is to replace the current expert in room assignment. (Alternative system roles

could be to simulate consequences of various assignments, to train novices in room assignment,

or to critique solutions.) The descriptions of the sta� and of the rooms are input to the system;

the output of the system is a mapping from persons to rooms (i.e., a set of person-to-room

assignments). Another important factor for the task analysis is the availability of expertise.

Domain knowledge is available in the form of a transcript from a problem-solving session.

2These data are clearly variable; thus, they should be used as task input if the system will be used for
assigning persons to rooms for several groups. Indeed, most approaches to the Sisyphus problem regard person
and room descriptions as run-time input [25].
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C5-113 C5-114 C5-115 C5-116 C5-117 C5-118

C5-119

C5-120C5-121C5-122C5-123

C5-144

C5-142 C5-143

Figure 4: A sample 
oor plan in the Sisyphus room-assignment problem. The task is to assign

persons to rooms under certain constraints. Source: The 
oor plan was provided by Marc

Linster, Digital Equipment Corporation; used with permission.

Table 2: Attributes of persons in the Sisyphus room-assignment problem.

Attribute Description

name what the name of the person is

professional role what the professional role of the person (e.g., researcher or secretary) is

smoker whether the person smokes tobacco

hacker whether the person is doing programming

works with who the person's coworkers are

single room whether the person is eligible for a single room

Table 3: Attributes of rooms in the Sisyphus room-assignment problem.

Attribute Description

name what the name or number of the room is

size what the size of the room (small or large) is

central to what degree the room is located centrally in the suite
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3 Method Selection

In this section, we shall discuss several methods that developers can use to solve the towers-

of-Hanoi and Sisyphus tasks. Our purpose is to provide a demonstration of the tradeo�s

associated with method selection, and of the e�ect of increased insight into the task on

method selection and con�guration.

3.1 Selection Considerations

Although it is di�cult to make a comprehensive list of factors to consider in method selection,

we can identify a set of recurring factors that are applicable to most tasks. Common factors

to consider in the selection of a problem-solving method include:

1. Input and output of the task. What information is available at run time? What is the

run-time output? Are explanations required?

2. Knowledge available. What type of knowledge can be acquired from domain specialists?

3. Solution quality. Is an optimal solution required, or is an approximation su�cient?

4. Computational and space complexity. What are the resources available in terms of time

and space?

5. Method 
exibility. Is the task likely to be modi�ed during development and mainte-

nance? What 
exibility in terms of recon�guration of the method for modi�ed tasks is

required?

Even for relatively simple tasks, such as the towers-of-Hanoi problem, there are many impor-

tant factors that determine the method selection. For example, the initial and goal states may

be available at run time only, or these states may be given as part of the task de�nition. In the

latter case, the developer can select a method that takes advantage of the state information

in the problem-solving strategy.

Ideally, the method selected consists of executable code that can be con�gured for the

task. If the developer cannot �nd an appropriate method or can construct one from a set

of primitive methods, literature references can serve as a helpful inspiration for the design of

new methods (which may be included eventually in the method library).

3.2 Method Selection for the Towers-of-Hanoi Task

In the classic version of the towers-of-Hanoi problem, the initial and goal states are given

as part of the problem de�nition. Also, the problem de�nition does not provide any move

strategies (i.e., domain knowledge); it is up to the player to plan the moves. The solution

quality, computational and space complexity, and method 
exibility are not provided in the

classic version per se. These factors depend on the context in which the problem solver

should operate. We shall describe brie
y a few methods that can be used to accomplish the

towers-of-Hanoi task.

1. Chronological-backtracking method. The chronological-backtracking method searches

the space of states for a permissible sequence of states that will reach the goal state from
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the initial state. The method backtracks as necessary during the search process. Method

con�guration involves the representation of states, the speci�cation of initial and goal

states, and the de�nition of transitions from states to subsequent states. Appendix A.1

discusses the details of this method.

2. Recursive task decomposition. Recursive task decomposition is an approach that breaks

down recursively the overall tasks into smaller subtasks. The decomposition continues

until the subtasks can be accomplished by a primitive method. Mapped to the towers-

of-Hanoi task, this approach represents the classic recursive solution of the problem.

Appendix A.2 discusses recursive task decomposition in terms of the towers-of-Hanoi

problem.

3. Iterative and piece-oriented methods. The iterative and piece-oriented methods require

the developer to de�ne a set of precise rules for generating an appropriate sequence of

state transitions. These methods rely extensively on domain knowledge, rather than on

problem decomposition. However, they also enjoy certain unique advantages over the

more general methods. Appendices A.3 and A.4 discuss move rules for the towers-of-

Hanoi task in the context of these methods.

4. General-task decomposition. General-task decomposition is similar to the method of

recursive task decomposition in that it decomposes the task into subtasks. General-

task decomposition, however, takes advantage of a subtask that transfers any state to a

single-tower state (i.e., a canonical state). This approach is similar to macro operators

[22]. Appendix A.5 describes this method in detail.

Chronological backtracking is a general method that can provide solutions for several versions

of the task, including nonclassical towers-of-Hanoi games (such as alternative initial and

goal con�gurations). These solutions are nonoptimal, however, in terms of computational

complexity and the number of required moves. By making further commitments to the task

and taking advantage of additional domain knowledge, we can reduce the upper limit for the

computational complexity. Thus, the more speci�c solutions can be viewed as task-speci�c

heuristics for the general chronological-backtracking method. By using perfect knowledge,

we can completely avoid backtracking, and can guarantee an optimal solution. In general,

however, we might have more than three pegs, and we might start or end with any state;

the domain de�nition of a legal move might be di�erent, too (e.g., it might be legal to move

whole parts of a tower during one move). Although the task-speci�c methods are more usable

than is chronological backtracking with respect to alternative problem variants, they are not

reusable across di�erent tasks.

3.3 Method Selection for the Sisyphus Room-Assignment Task

As discussed in Section 2.2, the input to the room-assignment problem solver consists of the

rooms and the persons to assign, and the output is a legal assignment of persons to rooms.

Furthermore, the domain knowledge is provided as a problem-solving transcript (see Table 1).

In addition to the factors listed in Section 3.1, the developer must consider the problem and

knowledge representation in the method selection. The developer must be able to map the

representations used by potential methods to representations appropriate for the task.

11



Another question is whether a computer-based problem solver should follow the expert's

reasoning precisely. A method that follows the transcript in Table 1 exactly will make all

decisions in the same order as the expert does. Thus, the method will be a strict model of

the problem-solving strategy used by the expert (or, more precisely, the strategy indicated by

the utterances captured in the protocol). An alternative approach is to decouple the method

from the transcript completely. The Sisyphus task potentially can be modeled according to

both approaches. The selection of an appropriate method depends mainly on the domain

knowledge available.

We use the board-game method to model the Sisyphus room-assignment task. The board-

game method can accomplish tasks that the developer can model as a set of pieces that

move among locations under certain constraints. Because we can view the room-assignment

problem as a game where persons move among rooms, we can cast the method to the room-

assignment task. (Initially, persons are located outside the building. Each person then moves

into a room under the assignment constraints.) Therefore, our motivation for using the board-

game approach is that this method provides a conceptual model of problem solving that we

can map readily to the task. Also, the board-game method can model the towers-of-Hanoi

task by de�ning the move rules for how disks can move among pegs. Section 3.4 describes

the board-game method in detail.

3.4 Board-Game Method

The concept of the board-game method is to view a problem as a board game in which pieces

move between locations (Figure 5). We assume that the game has a �xed number of pieces

and locations. More than one piece can be moved to the same location simultaneously, and,

if required, the pieces at each location can be ordered. The notion of states, which is an

important part of the con�guration of the chronological-backtracking method, exists in the

board-game method, but the notion of moves dominates the con�guration of the board-game

method. In the general case, several pieces may be transferred in each move|that is, a

move may consist of a number of actions. Legal moves are de�ned by constraints on how

pieces move between locations. Here, there is no explicit notion of a transition function that

transforms a given state into the next state. Rather, actions represent the withdrawal of

a piece from the source location and the deposit of that piece at the target location. This

commitment restricts the types of tasks that the board-game method can perform, but makes

task modeling easier for the class of tasks supported by the method.

Moves can be performed only when certain conditions are met|for example, the game

rules might stipulate that the target location for the move must be empty. In addition to

the move conditions, there are constraints expressing the legal situations in the game. For

instance, a move that is legal super�cially may lead to a forbidden situation in the game. We

refer to such situations as constraint violations or contradictions in the game.

Before we can de�ne the board-gamemethod, we must establish how states represent board

con�gurations. Let R be the set of potential states of the board game. A potential state is

any (not necessarily legal) assignment of pieces to locations. A state S 2 R is characterized

by 8><
>:

locations V = fvi j i = 1; : : : ; kg;

pieces P = fpj j j = 1; : : : ; ng;

potential board con�guration C(S) � P � V ,
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location

piece

Figure 5: In the board-game method, game pieces move between board locations.

where (pj; vi) 2 C(S) means that piece pj is at location vi in state S. Naturally, not all the

potential states of a given game are legal. Let F be a set of forbidden states in the game. A

state S satis�es the predicate contradiction(S) if S 2 F . The set of legal states Rlegal in the

game is de�ned as Rlegal = R n F (where the n-operator denotes set di�erence). By de�ning

states as sets of assignments, we can represent impermissible and unusual situations, such

as when a piece exists in multiple locations simultaneously|a condition that might arise in

certain board-game tasks. To simplify the following de�nitions, we shall use the notation vi(S)

to denote the pieces at location vi in state S. The function vi(S) can be de�ned in terms of

C(S) as vi(S) = fp j (p; vi) 2 C(S)g. Certain board-game tasks might require that the pieces

at a particular location are ordered, in which case the value of vi(S) could be de�ned as a list

rather than as a set.

We can now de�ne the board-game method in terms of the chronological-backtracking

method. The this method requires that we de�ne a transition function (T-function) that

produces subsequent states from the current state (see Appendix A.1). A T-function adapted

for board games can handle the generation of subsequent states in chronological backtracking.

The T-function for the board-game method can be de�ned as

T (S) = fS 0 j 8p; vi; vj : p 2 P ^ vi; vj 2 V ^

p 2 vi(S) ^

possible move(S; p; vi; vj) ^

transfer(S; p; vi; vj ; S
0) ^

:contradiction(S 0) g;

where i = 1; : : : ; k; j = 1; : : : ; k; i 6= j:

The function T(S) returns the union of the subsequent states that results from applica-

tion of all possible moves to the current state S. The new state S 0 is the result of per-

formance of a move from the location (state variable) vi to the location vj . The predicate

possible move(S; p; vi; vj) de�nes when it is possible to move piece p on location vi in state

S to location vj. The predicate de�nes all the possible moves of the piece p in the state

S. Note that possible moves may still result in illegal states, as de�ned by the predicate

contradiction(S), in which case the board-game method will not perform the move. From

the de�nition of the function T(S), it follows that moves and actions can be performed by
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removal of pieces from one location and deposit of the same pieces to another location. The

predicate transfer(S; p; vi; vj ; S
0) de�nes the new state S 0 in terms of the current state S, the

piece p, the current location vi, and the target location vj . For the board-game method, we

de�ne the transfer predicate as

8S; p; vi; vj; S
0 :

transfer(S; p; vi; vj ; S
0)  

vi; vj ; vk 2 V ^

vj(S
0) = fpg [ vj(S) ^

vi(S
0) = vi(S) n fpg ^

8vk((vk 6= vi) ^ (vk 6= vj) ! (vk(S) = vk(S
0)) ):

Note that certain classical arti�cial-intelligence problems|such as the frame and rami�-

cation problems|do not arise here, because we make strong assumptions about the nature

of a move. For example, we assume that the moves have no side e�ects other than moving

pieces between locations, and that the consequences of a move are well de�ned. Also note

that the strong assumptions make it di�cult to model certain games where moves have side

e�ects, and where pieces can change type during the game (e.g., when a chess pawn reaches

the end of the board and is promoted into a queen).

4 Method Con�guration and Specialization

Before we can use a method to accomplish a task, we must con�gure the method to handle the

particular task instance. Because it is impossible to create a library of reusable methods that

will �t every task precisely, we use generic methods that handle generalized tasks. Developers

can then con�gure the method selected to solve the domain task, and method designers can

specialize methods to match a speci�c class of tasks.

4.1 Con�guration

Method con�guration is largely a matter of (1) selecting mechanisms (or methods) for a

method's subtasks (see Figure 1), and (2) de�ning the mapping between method terms and

domain terms. The method designer de�nes the method such that there are appropriate sub-

tasks where alternative mechanisms can be used. Typically, the method designer recommends

a set of mechanisms for each subtask. The developer can then select a method from the set of

recommended ones, or can choose a method that was not anticipated by the method designer.

By selecting di�erent methods for performing the subtasks, the developer can cause radically

di�erent behavior of the method. Therefore, it is the responsibility of the method designer to

identify subtasks that enable reusability for a large class of tasks, while providing guidance

for task modeling.

When the subtasks have been modeled, the developer proceeds with the de�nition of the

mapping between method and domain concepts. The board-game method, for example, uses

concepts such as pieces and locations, whereas the room-assignment task is concerned with

concepts such as persons and rooms. Likewise, the developer must map the concepts of the

subtasks to the concepts supported by the mechanisms performing the subtasks. Section 5

discusses in detail the relationship between problem-solving methods and domain ontologies.
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Figure 6: Specialization and con�guration of methods. In addition to the towers of Hanoi and

Sisyphus tasks, we have experimented with method con�guration for the farmer's dilemma,

cannibals-and-missionaries, and vt tasks. We have used the chronological-backtracking

method to model three tasks (towers of Hanoi, farmer's dilemma, and Sisyphus), as well

as to implement the board-game and propose-and-revise methods. In turn, we have used the

board-game method to reimplement the three tasks, as well as the cannibals-and-missionaries

problem. The methods board game1 and board game2 are two alternative implementations

that are based on the chronological-backtracking and propose-and-revise methods, respec-

tively.

To experiment with method con�guration, we have (1) implemented in clips
3 [36] the

methods discussed and (2) con�gured these methods to perform example tasks, such as the

towers-of-Hanoi and Sisyphus room-assignment tasks. In addition to chronological-backtracking

and the board-game methods, we have developed and con�gured the propose-and-revise

method for the vt task (i.e., elevator con�guration) [27; 40]. Figure 6 illustrates the re-

lationship between the method con�gurations. Note that we have modeled some of these

tasks using di�erent methods. Section 7 provides a comparison of the di�erent modeling

approaches.

We shall discuss the details of two interesting method con�gurations. In Section 4.1.1,

we use the general chronological-backtracking method to model the towser-of-Hanoi task.

This example illustrates the use of a general method for a relatively simple task. As shown

in Figure 6, we can con�gure chronological-backtracking for the Sisyphus task, and for the

implementation of the board-game and propose-and-revise methods, but these con�guration

and too lenghth to discuss in detail (see Section 7). In Section 4.1.2, we examine the con�gu-

ration of the board-game method for the room-assignment task. This example illustrates how

high-level concepts, such as possible moves and game contradictions, are used in the method

con�guration.

3
Clips is a programming language that supports object-oriented programming and production rules. Clips

has a Lisp-like syntax, is implemented in C, and runs on multiple platforms.
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4.1.1 Con�guration of the Chronological-Backtracking Method for the Towers

of Hanoi Task

To con�gure the chronological-backtracking method for the towers-of-Hanoi task, the devel-

oper must de�ne the disk-moving task, and must specialize chronological backtracking as the

solution method for the task. The chronological-backtracking method requires that we de�ne

the concept of state and an equality predicate for states. To detect and avoid circularities in

the state space, the method uses the equality predicate to check whether the current state on

its search path is equal to a state that has already been encountered on the path. To model

the towers-of-Hanoi problem, we represent the pegs as a set of state variables, fv1; v2; : : : ; vng,

each of which can take as its value a list of positive integers or the empty list. The integers

represent the disks on the peg, and the integer values represent the sizes of the disks. The

empty list indicates that no disk is placed on the peg. A state S in the disk-moving task is

represented by the values of all the state variables fv1(S); v2(S); : : : ; vn(S)g. Two states are

considered equal if the values of all state variables in one state are equal to the values of the

corresponding state variables; therefore, the equality predicate can be de�ned as

8S; S 0; i : equal(S; S 0)  vi(S) = vi(S
0):

In the towers-of-Hanoi disk-moving task, we de�ne the next possible states as the re-

sult of moving one disk from one peg to another. We use the domain-speci�c predicate

move disk(S; vi; vj ; S
0) to specify the move of the top disk of peg i to the top of peg j. The

variable vi(S) holds a set of integers representing the disks at peg i in state S. The func-

tion min(vi(S)) returns the smallest integer in this set|the integer representing the smallest,

topmost disk at the peg i. The predicate move disk(S; vi; vj ; S
0) can be de�ned as

8S; vi; vj; S
0 :

move disk(S; vi; vj ; S
0)  

vi; vj ; vk 2 V ^

vi(S) 6= ; ^

vj(S
0) = fmin(vi(S))g [ vj(S) ^

vi(S
0) = vi(S) n fmin(vi(S))g ^

8vk(vk 6= vi ^ vk 6= vj ! vk(S) = vk(S
0) ):

We can now de�ne T(S) as the union of the results of applying all possible moves from each

state variable. That is, for each state variable vi, the set of i and j permutations, where i 6= j,

represents all the possible actions of moving one disk from peg i to peg j. Thus, if we de�ne

the predicate P(S; S 0) to be the relationship between the current state and the next states in

terms of all permutations of locations for move disk(S; vi; vj ; S
0), and de�ne Q(S) to be the

set of legal con�gurations of pegs on disks, then we can de�ne the T(S) to be

T (S) = fS 0 j S 0 6= S ^ P(S; S 0) ^Q(S 0) g:

To complete our con�guration of the problem-solving method for the disk-moving task,

we must de�ne (1) the number of pegs k, (2) the initial state SI and goal state SG (both

states are represented as particular assignments of values to the k state variables, and both

states may be run-time input), and (3) the predicate Q(S) that represents constraints on
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permissible states.4 In this model, our example towers-of-Hanoi problem (Figure 3) has the

following de�nition:

1. n = 3.

2. v1(SI) = (1; 2; : : : ;m� 1;m), v2(SI) = (), v3(SI) = (),

v1(SG) = (), v2(SG) = (), v3(SG) = (1; 2; : : : ; n� 1; n), where n = number of disks.

3. The states must satisfy the state-consistency constraint Q(S) that says that, for each

state variable vi(S), if the value of vi(S) is (d1;i; d2;i; : : : ; dk;i), then dj;i > dj+1;i.

Note that, with this de�nition of Q(S), we do not have to constrain the moves of the game

with P(S; S 0). However, an alternative approach to this con�guration of the problem-solving

method is to use P(S; S 0) to constrain the use of the move disk predicate such that no illegal

moves will be performed. In this con�guration, the constraint Q(S) becomes unnecessary.

4.1.2 The Board-Game Method for the Sisyphus Task

We can con�gure the board-game method to perform the Sisyphus room-assignment task.

If we view the room-assignment task as a board game where the persons are pieces, and

the rooms are locations, we can de�ne legal moves for persons between rooms (or from the

unassigned location). Initially, all persons are located outside the building (i.e., nobody is as-

signed a room). The goal is to bring all persons inside the building under the room-assignment

constraints; the goal predicate checks for an empty outside location. Contradictions occur,

for instance, when a smoker and a nonsmoker are assigned to the same room (because the

problem de�nition stipulates that smokers and nonsmokers should not share rooms). If a

contradiction develops, the problem solver backtracks, then attempts another series of moves.

The result of this algorithm is the goal state in which persons have been assigned correctly

to rooms.

The predicate possible move(S; p; vu; vr) de�nes that it is legal to move the �rst unassigned

person into any available room that matches the person's professional role. The state variable

vr, where r 2 R and R = fC5-113, : : : , C5-117, C5-119, : : : , C5-123g (in the Sisyphus example;

see Section 2.2), represents a room in the o�ce building, and vr(S) is the set of persons as-

signed to vr in state S. The de�nition of possible move uses the function select(vu(S)) to select

the person to be assigned. The predicate unoccupied(S; vr) is a help predicate that de�nes the

situation in which a room can accommodate a person. The predicate contradiction(S) detects

any contradiction where smokers and nonsmokers share the same room. In the initial state

SI , each person p in the set P of persons to assign is at the location unassigned (vu(SI) = P).

In the room-assignment task, there is no prede�ned goal state, because the �nal state is the

result. We can de�ne a goal predicate that tests whether the location representing unassigned

is empty as 8S : goal(S)  vu = ;: We de�ne the possible move and contradiction predicates

for the room-assignment task as

8S; p; vu; vr; xrole :

4Note that, however, for a generalized tower-of-Hanoi task, parts 1 and 2 can be run-time input to the

problem solver. Also, it is conceivable that certain tasks will require the state consistency in part 3 to be
input at run time.
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possible move(S; p; vu; vr)  

p 2 P ^

vr 2 R ^

vu(S) 6= ; ^

p = select(vu(S)) ^

professional role(p; xrole) ^

(require large(xrole)! large(vr) ) ^

(require central(xrole)! central(vr) ) ^

unoccupied(S; vr);

8S; vr; p; xrole :

unoccupied(S; vr)  

vr(S) = ; _

(vr(S) = fpg ^ professional role(p; xrole) ^ sharing(xrole) );

8S; vr; pA; pB :

contradiction(S)  

vr 2 R ^

pA; pB 2 P ^

pA; pB 2 vr(S) ^

smoker(pA) ^ :smoker(pB):

We do not claim that this con�guration of the board-game problem leads to an exact

solution to the Sisyphus room-assignment problem as de�ned in [25]. For the sake of brevity,

and because we are merely using the room-assignment problem as a basis for our discussion

on method selection and con�guration, we have deliberately excluded from this method con-

�guration certain aspects, such as the order in which persons are assigned to rooms, and

constraints related to members of projects.

4.2 Specialization

In the de�nition of new methods, method designers can take advantage of methods created

previously. By specializing methods to classes of tasks more narrow than those for which

the methods were designed originally, designers can reuse much of the development work.

Another view of method specialization is to regard the methods under design as tasks. We

can implement the board-game method, for instance, by modeling the board-game task with

a relatively general method. Figure 6 shows the specialization of chronological backtracking
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to the board-game and propose-and-revise methods. In turn, we can specialize the propose-

and-revise method to another instance of the board-game method (by proposing a board

con�guration and by revising the con�guration by moving pieces).

What remains to be done at this point is to map the input and output of the con�gured

method to the environment and to the domain ontology. Moreover, we must acquire the

domain knowledge required by the method to perform its task. In the Section 5, we shall

examine the relationships between problem-solving methods and ontologies; in Section 6, we

shall discuss knowledge acquisition for methods.

5 Problem-Solving Methods and Ontologies

Developers cannot reuse problem-solving methods easily without considering the methods'

input and output, as well as to the domain knowledge required by the method. The input

that a method accepts and the output that the method generates must be de�ned such that

the developer can map the task-level input and output to the method's input and output

structures. We shall discuss the interaction between the methods and the declarative repre-

sentations that model the domain. The arti�cial-intelligence community has adopted from

metaphysics the term ontology for models that are concerned with the nature and relations

of being [32; 37]. In the arti�cial-intelligence context, however, the term ontology usually

denotes models that de�ne concepts and relationships among concepts. These concepts can

represent classes of material objects, abstract terms, arti�cially constructed classes, states of

a system, and so on. In many aspects, ontologies are engineered artifacts that model the

world for a particular purpose. Moreover, the accuracy and predictability of the models are

relative to the task and the design of the system that uses them [6]. Frame systems and

object-oriented programming languages provide an operational framework for de�ning and

using ontologies. Most of these languages provide semantics for basic relations, such as is-a

and instance-of. In prot�eg�e-ii, we use ontologies to de�ne the input and output of methods

[17; 48].

Problem-solving methods and domain ontologies cannot be viewed in isolation. The de-

sign of a domain ontology a�ects how well methods can use the ontology for problem solving.

Likewise, the method selected requires certain information for its problem-solving strategy,

which a�ects the scope and organization of the domain ontology. For instance, a planning

method might require the de�nition in the domain ontology of the actions relevant to the

domain, and a classi�cation method might require a taxonomy of domain-speci�c hypothe-

ses for its problem-solving strategy. Development methodologies that incorporate method

reuse must take into account this interdependence between ontologies and methods, as the

development of knowledge-based systems is fundamentally an iterative process, which involves

integrated modeling of declarative and procedural aspects of the application task. Bylander

and Chandrasekaran [1] discuss this interaction problem in the context of knowledge acqui-

sition for generic tasks. Linster [24] discusses the mapping between domain ontologies and

problem-solving methods.

Problem-solving methods are designed to perform tasks that involve operations on com-

plex data structures. In the prot�eg�e-ii approach, we use the notion of method ontologies

[46]. Method ontologies de�ne the methods' interfaces to other methods and to other com-

ponents of the application system (e.g., user and database interfaces). The method's input

ontology de�nes the object structures that the method requires as input, and the output
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ontology de�nes the output of the method. Figure 7 shows input and output ontologies for

a problem-solving method, and their relationships to the application ontology. The devel-

oper must map the vocabulary de�ned by the application ontology to the method ontologies

[17; 48]. In many cases, there is merely a terminological di�erence between de�nitions in

the domain and method ontologies. For instance, when the board-game method is used for

the Sisyphus room-assignment task, the method-speci�c terms piece and location correspond

directly to the domain-speci�c terms person and room. The developer can accomplish such

terminological mappings by linking corresponding concepts in the method and domain ontolo-

gies. However, sometimes there is a signi�cant semantic di�erence between relevant concepts

in the method and domain ontologies. One concept in the method ontology may correspond

to several concepts in the domain ontology. For example, there is a signi�cant semantic

di�erence between the notion of states in the chronological-backtracking method and the con-

cepts of persons and rooms in the Sisyphus task. In such cases, the developer must de�ne

the mapping in a language that is more expressive than is straightforward concept linking.

Transformation rules are an example of an approach that allows the developer to de�ne such

complex mappings.

In addition to mapping the input and output of the problem-solving methods to domain

ontologies, the developer must ensure that the appropriate domain knowledge is available to

the methods. Problem-solving methods resemble miniature expert-system shells in that they

are designed to perform a task by drawing conclusions from a knowledge base. Such method

knowledge bases contain the domain knowledge that the method requires to perform the task.

For example, a classi�cation method might require a set of classi�cation rules, and a planning

method might require a set of preconditions (e.g., for actions), the members of which are

expressed as rules. Typically, methods invoke the method knowledge bases at certain points

in the problem-solving strategy, such as when they must make a complex decision, and when

they must derive a value. McDermott [29] refers to these inferences from a knowledge base as

knowledge roles. Figure 8 illustrates how a problem-solving method uses its knowledge base.

In Section 6, we shall discuss how the developer can approach the knowledge-acquisition

problem for the method knowledge bases.

6 Knowledge Acquisition

Domain knowledge can be acquired conveniently by a method-speci�c knowledge-acquisition

tool that allows experts to enter, review, and edit domain knowledge [29]. One approach

to providing support in the form of a knowledge-acquisition tool is to associate a generic

knowledge-acquisition tool with each problem-solving method [21; 28; 41]. Our approach,

however, is to generate and custom tailor a knowledge-acquisition tool independent of the

problem-solving methods that are part of the design for the knowledge-based system [8; 9;

11; 12; 13; 38]. Our motivation for generating knowledge-acquisition tools independent of the

problem-solving methods is that the cognitive basis for the (declarative) domain knowledge

that the knowledge base models is di�erent from the cognitive basis for the operations that

the problem-solving method performs.

Analogous to the task analysis, the development of a domain-oriented knowledge-acquisition

tool must be preceded by a knowledge-acquisition analysis. The purpose of knowledge-

acquisition analysis is to examine the development situation from a knowledge-acquisition

point of view, and to formulate requirements for tool support. This analysis involves (1) iden-
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Figure 7: Method ontologies. The input and output ontologies de�ne the input and output of

the method. In prot�eg�e-ii, the developer de�nes mappings between the input and output

ontologies and the application ontology. The developer can design the application ontology

by reusing parts of domain ontologies (which can be applicable to several applications).
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Figure 8: Method knowledge bases. To make inferences during problem solving, methods

can use knowledge bases that de�ne domain knowledge, but are speci�c and local to each

method. A knowledge-acquisition tool may optionally generate these domain- and method-

speci�c knowledge bases. In prot�eg�e-ii, the developer de�nes a mapping from the output

of the knowledge-acquisition tool (which consists of instances of application-ontology classes)

to the method knowledge base (which consists of instances of method-ontology classes) [17].
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ti�cation of the users of the knowledge-acquisition tool (e.g., domain experts); (2) segmenta-

tion of the part of the knowledge base that is to be acquired through the tool; (3) de�nition

of a language in which to express the knowledge (e.g., a graphical language); and (4) speci�-

cation of semantics for this language, as well as of denotational semantics that describe the

generation of knowledge bases. Knowledge-acquisition analysis is thus a phase in the design of

support tools. Alternatively, knowledge-acquisition analysis requires selection of a preexisting

tool.

When the knowledge-acquisition situation has been analyzed and the role for the knowledge-

acquisition tool has been established, the developer can design the tool. If we examine the

Sisyphus room-assignment problem and the sample transcript provided, we �nd that the ex-

pert is concerned not so much with the individuals themselves, as with their professional roles

in the group. The transcript contains statements such as: \The head of the group needs a

central room." (The fact that a particular person is the director of the group must then be

described in the run-time input data.) Another important observation is that the professional

roles provide a speci�cation, or sometimes a justi�cation, for the type of room to which a

person should be assigned|for instance, the head of the group requires a large single room,

whereas a sta� researcher may share a room with another person. Hence, our hypothesis

is that much of the domain knowledge required for room assignment can be expressed in

the form of rules, where the premise matches a certain professional role, and where the rule

conclusion is a room speci�cation (e.g., a query to a database of rooms available). We are

primarily interested in expressing a mapping from professional roles to potential assignments

of persons to rooms. An example of a rule in this rule set follows:

8(p; r) (p 2 person ^ r 2 professional role): head-of-group(p) !

require large(r) ^ require central(r).

To illustrate how a knowledge-acquisition tool that is custom tailored for the Sisyphus

room-assignment task can be designed according to this analysis, we have implemented a pro-

totype tool in the metatool dash [13]. Dash is a component of the prot�eg�e-ii architecture.

Dash takes as input a domain ontology, and produces as output a knowledge-acquisition tool

that allows domain specialists to create instances of classes in that ontology. Dash supports

the developer in creating a dialog structure for the knowledge-acquisition tool, and in de-

signing layouts for form-based knowledge editors. Figure 9 shows a sample screen from the

generated knowledge-acquisition tool that allows the expert to specify new professional roles

for the Sisyphus problem solver. The knowledge-acquisition tool in Figure 9 produces clips

frame instances from the entries that users make into these forms. The clips implementation

of the problem solver is con�gured to use these instances to select an appropriate room for

each professional role.

Up to this point, we have mainly examined reusable problem-solving methods from an

abstract view|that is, we have not concerned ourselves with the actual implementation of

methods within a programming language. In Section 7, we shall continue with a discussion

of results and lessons learned from an implementation of the methods and tasks that we

discussed in the previous sections.
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Figure 9: A screen display from the knowledge-acquisition tool for the Sisyphus room-

assignment problem. The main menu (upper left) provides access to a professional-role

browser (upper right), which can be used to open �ve di�erent professional-role forms (lower

right).
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Table 4: Lines of clips code added to the chronological-backtracking and board-gamemethods

to con�gure them for various tasks.

Task Problem-solving method Lines of code

towers of Hanoi chronological backtracking 76

farmer's dilemma chronological backtracking 72

Sisyphus room assignment chronological backtracking 278

towers of Hanoi board game 17

farmer's dilemma board game 31

cannibals and missionaries board game 32

Sisyphus room assignment board game 39

7 Implementation Results

Probably the most important factor that determines the utility of reusable problem-solving

methods is the time required to con�gure a method for a particular task and to integrate

that method with other methods in the knowledge-based system under development. We

seek to develop a framework for con�guration of problem-solving methods that minimizes

the knowledge-engineering time required. Because method con�guration in �rst-order logic

may not re
ect accurately method reuse and con�guration in practical development (where

existing programming languages are used as the implementation vehicle), we shall examine

the utility of method reuse in clips. Table 4 shows the numbers of lines of clips code that

were required to con�gure the chronological-backtracking and board-gamemethods for various

tasks (i.e., by providing T-functions and move rules, respectively). Although there are many

problems associated with measuring the complexity of a program by counting the number of

program lines, the number of lines is one of the simplest and most intuitive measures we have.

Moreover, because the programs analyzed are relatively small, the di�erences among various

software metrics are minor for our purposes. Although it is di�cult to measure the design

and implementation e�ort objectively, we believe that the lines of code correlate well to the

implementation e�ort in this project.

As shown in Table 4, the con�guration of the chronological-backtracking method for the

Sisyphus room-assignment problem required 278 lines of code. The chronological-backtracking

method itself, however, was implemented using a recursive algorithm in six lines of code (with-

out utility functions for management of various data structures). In a sense, the chronological-

backtracking method is highly reusable, because it is general and simple. However, this

method requires substantial work if it is to be reused for any interesting task.

The board-game method, however, allows for much more compact method con�gura-

tions than does chronological backtracking. The con�guration of the board-game method

for the Sisyphus task required only 39 lines of code. The results for the other problems

we tried are similar (see Table 4). The level of reuse (at least, in terms of additional pro-

gram lines) is signi�cantly larger when these problems are implemented with the board-game

method. Figure 10 illustrates the proportion of reuse in the con�gurations of the chronological-

backtracking and board-game methods for the Sisyphus room-assignment task. The imple-

mentation of the chronological-backtrackingmethod required 35 lines of utility functions (e.g.,

list-manipulation functions) and six lines of recursive de�nition of chronological backtracking.
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Figure 10: The disposition of clips code in the con�guration of the chronological-backtracking

and board-game methods for the Sisyphus room-assignment task. The columns represent

the chronological-backtracking and board-game methods, respectively. Note that the to-

tal amount of clips code required to implement a program that accomplishes the room-

assignment task is approximately the same for the chronological-backtracking and board-game

methods (319 versus 325 lines of code). However, the board-game method allows us to reuse

more code than does the chronological-backtracking method.

The con�guration of the chronological-backtracking method for the Sisyphus task required

278 lines. In this case, 13 percent of the complete program for the Sisyphus problem consists

of reused code. The implementation of the board-game method is based on the chronological-

backtracking method, and includes an additional 78 lines for utility functions and 158 lines for

the T-function that de�nes the board-game method in terms of chronological backtracking.5

The con�guration of the board-game method required 39 lines. In the board-game case, 88

percent of the complete program for the Sisyphus problem consists of reused code.

8 Related Work

Several research groups are developing architectures for reusable problem-solving methods.

We shall discuss four important approaches that are related closely to the prot�eg�e-ii frame-

work.

Chandrasekaran [2; 3] was among the �rst researchers to suggest the development of

knowledge-based systems from reusable components, or generic tasks. A generic task de�nes

both a class of application tasks with common features, and a method for accomplishing

5The board-game method reuses code from the chronological-backtracking method.
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these tasks. In his more recent work on task analysis, Chandrasekaran [4] uses task structures

for modeling of application tasks. Task structures lay out the relationships between a task,

the problem-solving methods for it, the knowledge requirement for the methods, and the

subtasks that the methods set up. In this approach, as in prot�eg�e-ii, the developer models

new tasks by identifying appropriate task structures recursively. Early versions of the generic-

task approach used problem-solving methods of a relatively large grain size (e.g., the order of

planners and schedulers) when compared to prot�eg�e-ii.

In the components-of-expertise approach [44], Steels and his colleagues are developing

application kits that provide a collection of software artifacts that developers can use to build

a knowledge-based system [45]. Application kits contain most of the components required to

develop target systems that perform a certain class of application tasks (e.g., con�guration

and planning). At the highest level, this approach is based in three perspectives of the

target system: models (domain ontologies), methods, and tasks. The developer re�nes these

perspectives successively in a spiral-development approach that moves toward the execution

and code levels of the target system. An important feature of the application-kit approach

is that the application kits are built from primitive elements that the developer can inspect

and modify. Steels and his colleagues are developing the krest workbench, which supports

the development of knowledge-based systems from application kits.

An important di�erence between prot�eg�e-ii and the application-kit approach is that

the goal of prot�eg�e-ii is to minimize the programming required for method reuse, whereas

krest de�nes models, methods, and tasks at several architectural levels, including the code

level. Like prot�eg�e-ii, krest allows the developer to combine explicitly domain ontologies

and problem-solving methods to instantiate models for application tasks. Krest, however,

requires that models be de�ned in terms of Lisp data structures and that problem-solving

methods be de�ned as Lisp program code. Another signi�cant di�erence between prot�eg�e-ii

and the approaches of Chandrasekaran and Steels is that an important goal of the prot�eg�e-ii

environment is to support the generation of domain-speci�c knowledge-acquisition tools.

Spark, Burn, and FireFighter (sbf) [21; 28] constitute a set of tools that is designed to

help nonprogrammers and developers to build application programs. The sbf approach relies

heavily on workplace analysis for modeling of the application task. Spark is a con�gura-

tion tool that allows the developer to build problem solvers from reusable nondecomposable

components that, in the sbf framework, are called mechanisms. The grain size of such mech-

anisms can be up to whole application programs. Each mechanism has associated with it a

knowledge-acquisition tool that elicits and generates the knowledge required by the mecha-

nism to perform the latter's task. Burn is a development tool that elicits domain knowledge

from application specialists by invoking mechanism-speci�c knowledge-acquisition tools. Fire-

Fighter is a debugging tool that helps the developer to debug the �nal application system.

The dids [41] framework for development of knowledge-based systems also uses reusable

mechanisms as its basic components. Dids is designed for the modeling of con�guration-

design tasks. Such tasks involve the construction of a design (e.g., a design of an elevator)

based on a �xed set of parts. In the dids approach, the target systems select parts, and

interconnect them according to design speci�cations provided by the end users. The dids

library of mechanisms allows the developer to construct new problem-solving methods for new

design tasks. The mechanisms operate on a standardized knowledge representation. Also, the

dids framework supports the con�guration of method-speci�c knowledge-acquisition tools for

the acquisition of relevant con�guration knowledge. The sbf and dids frameworks are similar
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to that of prot�eg�e-ii in that all approaches emphasize generation of knowledge-acquisition

tools. However, the prot�eg�e-ii approach to generation of knowledge-acquisition tools di�ers

from that of sbf and dids in that prot�eg�e-ii uses domain ontologies as the basis for the

tool generation to create a coherent dialog structure for the target tool.

9 Summary and Conclusions

Reusable problem-solving methods provide building blocks for developers of knowledge-based

systems. In essence, such methods are abstractions of problem-solving behavior that capture

procedural knowledge for accomplishing a task. We have studied the selection and con�gu-

ration of methods for several di�erent tasks, and have described how the input-and-output

requirements of problem-solving methods must be mapped onto domain ontologies. In ad-

dition, we have discussed two supplementary design activities: task analysis and knowledge

acquisition. The chronological-backtracking and board-game methods served as the basis for

our examination of task modeling with reusable problem-solving methods.

An important question for all reusable problem-solving methods concerns the scope for

the methods. Researchers distinguish between general and role-limiting methods for problem

solving.6 The disadvantage of general methods is that they do not constitute knowledge roles

that can guide su�ciently the method con�guration and the acquisition of the knowledge re-

quired for the method [29]. Role-limiting methods, on the other hand, provide more structure

and guidance for method con�guration than do general methods. Not surprisingly, the results

of our work con�rm that we can indeed use both general and role-limiting methods to model

many tasks, but that the cost of using general methods might be too high, especially when

the amount of reused code is taken into account. More important, we showed how method

designers can de�ne new methods by making additional ontological commitments to preex-

isting methods, and by specializing their behavior. Such ontological commitments to general

methods can result in more speci�c methods that decrease signi�cantly the work required for

task modeling. For example, the ontological commitments made by the board-game method

help developers to map new tasks to the method, and to con�gure the method for new tasks.

The work required to con�gure the board-game method for the Sisyphus room-assignment

task is signi�cantly less than that required to con�gure the chronological-backtracking for the

same task.

The modeling support of a problem-solving method is determined by the context in which

that method is used. One of the most important factors for the reusability of a method is

the cognitive distance between the method and the task that the developer models with the

method. Moreover, problem-solving methods must support conceptual models that make the

methods explainable to developers, and intuitive to reuse. The notions of general and role-

limiting methods are de facto context dependent, and are relative to the tasks being modeled.

Methods that provide clear mental models for problem solving help method designers to

communicate results, and help developers to understand how methods operate, and how

methods can be con�gured to perform new tasks. Given a library of such methods, the

developer can select an appropriate method, con�gure it to perform particular application

6Sometimes, the phrases weak method and strong method are used to denote general and speci�c methods,
respectively. Weak methods make only weak assumptions about the task (i.e., a general method such as

chronological backtracking). Strong methods make strong assumptions about the task (i.e., a speci�c method,
such as the board-game method).
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tasks, and, optionally, generate a knowledge-acquisition tool that elicits the domain knowledge

required for problem solving.
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Appendix

A Methods for the Towers of Hanoi Task

For the towers-of-Hanoi task, we shall consider �ve problem-solving methods. The �rst

method, state-space search by chronological backtracking (Appendix A.1), is general and

can be con�gured to accomplish many tasks, whereas the other methods discussed (Appen-

dices A.2{A.5) make further commitments to the structure of the towers-of-Hanoi task, and

take advantage of speci�c domain insights.

A.1 Chronological-Backtracking Method

State-space search by chronological backtracking explores the space of admissible states (see

Figure 11). The method searches for a sequence of states, where the �rst state is a given

initial state, the �nal state is a given goal state, and two consecutive states in the sequence

satisfy constraints on how states can follow one another. The method ontology consists of

a de�nition of problem states (Si) and an equality predicate de�ned between any two states.

The method uses the equality predicate to avoid circularities among states, and to identify

the �nal state. There are three inputs to the method: (1) an initial state SI , (2) a goal state

SG, and (3) constraints on the legal states C(Si). The constraints on the legal states are

de�ned as part of the method con�guration (Section 4.1.1). The output of the method is a

list of states (S1; : : : ; Sk) that satis�es the following conditions:

1. S1 = SI .

2. Sk = SG.

3. For each i such that 1 � i � k, Si satis�es the legal-state constraints C(Si); and, for

each i, 1 � i < k� 1, Si+1 is a member of T(Si), where T(Si) is the output of a subtask

that generates subsequent states, given input Si.

To reuse chronological backtracking as a method, the developer must de�ne how permissible

next states are produced from any given state. The chronological-backtracking method uses

a generator for subsequent states, which we shall call transition function (T-function). An

optional sorting function (S-function) reorders the output of the T-function. This sorting

function encodes domain heuristics that reorder the set of possible next states, such that

states that are likely to be on the solution path are tried �rst. The method has two subtasks

(in the prot�eg�e-ii sense): the next-states subtask (the T-function, T(Si)) and an optional

sort-states subtask (the S-function). The next-state subtask requires, as inputs, a state Si,

and a predicate P(Si; Sj) that, given Si, constrains the legal next state. The output of the

subtask is a set of states Sj that satis�es the predicate P(Si; Sj). The input of the sort-states

subtask is a list of states, and the output is a reordered list of the states on the input list.

The algorithm of the chronological-backtracking method can be expressed as follows:

1. De�ne two internal variables X and Y , such that X keeps track of all states that the

algorithm has considered already, and Y is a list of possible next states. Start the

algorithm by setting Y to the list consisting of the initial state SI .

2. If Y is the empty list, then stop, because there is no solution.
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Figure 11: State-space search by chronological backtracking. This method explores the space

of game states. The transition function T(S) is responsible for generation of subsequent states

from the current state.

3. If the �rst state of Y is the goal state SG, then add the state at the end of the X

variable, return the value of the X as the solution, and stop.

4. If the �rst state of Y is a member of X, then delete the �rst state from Y , and go to

step 2.

5. If the �rst state of Y is not a member of X, then perform the subtask next-states with

the �rst state of Y as input, and go to step 2.

Chronological backtracking is a method that developers can con�gure (by providing a T-

function) to solve most problems that can be accomplished by search. The work of modeling

an arbitrary task as a T-function, however, might be extensive. In the worst case, assuming

that no lexicographic ordering of the state production is possible, the method would need

O(kn) time (see Appendix A.6).

A.2 Recursive Task Decomposition

The method of recursive task decomposition (rtd) decomposes the overall task into subtasks

that can be accomplished by a basic method. In general, to specify a solution by rtd, we

need a base case and a speci�cation of the recursion in terms of the input task and of that

task's decomposition into simpler tasks of the same nature. For instance, we can decompose

the classic towers-of-Hanoi task in the following way, to move a tower of n disks from peg A

to peg B, using peg C:

classic_transfer(n, A, B, C) =

{if (n = 0) then

return

else

{classic_transfer(n-1, A, C, B);

move(1, A, B);

classic_transfer(n-1, C, B, A)}

}
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where move(1, A, B) is the basic move operation for the towers-of-Hanoi board game. The

operation move(1, A, B) moves the top disk from peg A to peg B. The use of the rtd

method, however, requires considerable domain and task-speci�c knowledge to suggest a viable

decomposition leading to a correct solution. Note that the speci�c rtd solution outlined could

work for any tower con�guration of the towers-of-Hanoi problem, and for any value of n or k

(without using the additional pegs); for only the classic version, however, does it produce the

optimal solution (because it cannot take advantage of additional pegs). Notice that there is

an implied overhead of O(n) space just to maintain the stack of tasks.

A.3 Iterative Method

In an iterative method, the developer must provide a set of rules, or an algorithm, that

speci�es a de�nitive transformation from one game state to another, starting with the initial

state and ending with the goal state. One such instantiation of the iterative method is the

following simple set of rules, where the main idea is derived from a topological representation

of the board [18]. Represent the pegs as a cycle (in the classic case, the triangle A, B, C). The

smallest of the n disks moves around the cycle: clockwise if n is odd, and counterclockwise

if n is even. After each move of the smallest disk, the only other legal move (by the current

second-largest movable disk) is made. Figure 12 illustrates the use of these rules for n = 3 and

for the triangle A, B, C of pegs. Note that the iterative method supplies a new, additional

quality to the solution: It is executable in the sense that we do not, strictly speaking, produce

a plan (unless we save a list of moves); rather, we obtain an execution trace of the optimal

solution. The iterative solution in this form is speci�c to towers-of-Hanoi con�gurations of

the tower type, and is optimal for only the classic towers-of-Hanoi task.

A.4 Piece-Oriented Method

The piece-oriented method is an object-oriented version of the iterative method. In this

approach, each disk can determine when it should move. In the piece-oriented method, the

developer must provide a uniform set of rules that describe when a piece should move. The

state of the game either is not used, or is used in a limited fashion. The pegs are represented

as a cycle. Disk i, i = 0; 1; : : : ; n � 1, moves one location to the left or to the right each

time in the same direction, depending on the parity of (n � i): clockwise if it is odd, and

counterclockwise if it is even. The following set of rules is adapted from a temporal analysis of

the towers-of-Hanoi problem [18], and uses both a topological and a temporal representation:

1. The (discrete) time units are numbered (0; 1; : : : ; 2n�1).

2. Initially, 8i, disk i makes its �rst move at time unit 2i.

3. Subsequently, 8i, disk i moves, every 2i+1 time units (after its �rst move).

If we examine the example of the iterative method closely (see Figure 12), we can see that

the smallest disk (i = 0) moves clockwise, whereas the second smallest disk (i = 1) moves

counterclockwise. A disk moves independently at time points where its move condition is

ful�lled. The concurrent-processing solution, in this form, is optimal only when applied to

the classic towers-of-Hanoi task; it can be used for any number of pegs, but, unless generalized,

it will not be optimal.
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Figure 12: The iterative method for the towers-of-Hanoi task. Note how the smallest disk

cycles around the pegs of the triangle A, B, C.

A.5 General-Task Decomposition

The general-task decomposition (gtd) approach decomposes the task explicitly into several

subtasks. Using gtd, we can solve the general task of transferring any initial state SI to

any goal state SG, by decomposing the towers-of-Hanoi task into the subtask make tower(S),

which transfers any state into a single-tower state (i.e., a legal state in which all disks are

located on a single peg):

transfer(SI , SG) =

{make_tower(SI);

reverse(make_tower(SG))}.

The operator reverse reverses a plan by applying the inverse of all move operators in reverse

order: The make tower(S) task, however, is decomposed easily into n tasks that solve the

classic version for m disks, m = 0; 1; : : : ; n � 1, because transforming any state S into a

single tower involves creating a tower of only the smallest disk, then transferring that disk

to the top of the second smallest disk (which must be free), then transferring the tower of

the two smallest disks on top of the third smallest disk, and, thus, eventually transferring a

tower of n � 1 disks onto the largest disk. Hence, we can use any of the previous methods

for the classic towers-of-Hanoi problem to solve this general towers-of-Hanoi task. Note that

the decomposition described here resembles the use of a macro-operator problem solver [22],

whose single operator transfers any state into one intermediate state. Unlike the speci�c rtd

solution presented in Appendix A.2, the more general gtd method works for any initial or

goal con�guration in the towers-of-Hanoi task.
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Table 5: Time and space comparisons for di�erent problem-solving methods for the classic

towers-of-Hanoi task. (n = number of disks; k = number of pegs [ k = 3 for the classic

version])

Problem-solving

method

Solution quality,

number of moves

Optimal

solution

Internal

time

Internal

spacea
Metatime Metaspace

chronological

backtracking


(2n) no O(kn) O(kn) up to O(kn) constant

recursive-task

decomposition

O(2n) yes O(2n) 0 O(2n) O(n)

iterative method O(2n) yes O(2n) constant constant constant

piece-oriented

concurrent

method

O(2n) yes O(2n) 0 constant constant

general-task

decomposition

O(2n) no O(2n) constant O(n) constant

aIn units of game size.

A.6 Remarks on the Methods for the Towers of Hanoi Task

We have outlined �ve problem-solving methods for the towers-of-Hanoi task. Inherent in the

design of knowledge-based systems from reusable methods are the knowledge and e�ciency

tradeo�s associated with the selection and con�guration of an appropriate method. For each

method for the towers-of-Hanoi task, we can ask the following questions:

1. What is the quality of the solution? An example of a domain-speci�c quality criterion

is the number of moves required to execute the solution.

2. What is the internal space needed during execution (computation) of the solution?

3. What is the internal time needed to compute the solution?

4. What is the metaspace needed for the method agenda, assuming such an agenda is

controlling the task-decomposition process and containing the task activations?

5. What is the metatime needed to control the method agenda (to decompose tasks, to

schedule tasks, and so on)?

We summarize properties of the methods for the towers-of-Hanoi task in Tables 5 and 6.
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Table 6: Comparison of di�erent problem-solving methods for a general towers-of-Hanoi task,

using robustness and additional dimensions of the solution.

Problem-solving

method

Arbitrary

start and goal

con�guration

Works for a

di�erent num-

ber of pegs

Works for a

di�erent num-

ber of disks

Takes advantage

of additional

pegsa

Remarks on

method/solution

chronological

backtracking

yes yes yes yes little knowledge

needed; all so-

lutions can be

produced

recursive-task

decomposition

no yes yes no a complete plan

iterative method no yes yes no executable

solution

piece-oriented

concurrent

method

no yes yes no concurrent

computation

general-task

decomposition

yes yes yes no a skeletal plan

aThe problem-solving method can take advantage of additional pegs (k > 3) to improve the quality of the
solution (in terms of the number of moves) without modi�cation of the method.
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