
TIMM: Exploring Task-Interface Links in MOBI-D

Jacob Eisenstein and Angel Puerta
Stanford University

251 Campus Drive – MSOB x215
Stanford, CA 94305-5479 USA

+1 650 723 5294
puerta@smi.stanford.edu

http://www.smi.stanford.edu/projects/mecano

ABSTRACT
One of the central elements of model-based interface
design is the mapping of abstract task models into
concrete interface designs. It is also one of the least
understood parts of model-based technology. Most
previous solutions to this problem focused on
determining automatically such mappings or on
hardwiring the mappings into software. We propose an
alternative solution in which we build interactive tools
that allow developers to view and manipulate such
mappings. To enable these capabilities, we exploit the
features of the interface modeling language in MOBI-D
(Model-Based Interface Designer), which is able to
represent declaratively mappings between abstract and
concrete units of an interface model. We present the
MOBI-D environment emphasizing its interactive tools
for task-interface mapping and illustrate the use of the
tools via examples. We claim that MOBI-D affords its
users a high level of flexibility in model-based interface
design and a comprehensive set of views into the design
knowledge and structure of an interface.

INTRODUCTION
The central appeal of model-based interface development
[4] is its professed ability to support the design of an
interface from an abstract representation to a concrete
design. Typically, this takes the form of a mapping
between a model of a user task and a model of the
presentation and of the dialog of an interface.
Unfortunately, our knowledge about how to define such
mappings is very limited. We lack theoretical
foundations to define them, and consequently to apply
them.

Notwithstanding this absence of a well-understood
framework, many model-based systems have attempted to
deliver specific solutions for the task-interface mapping
problem. The usual approach is to embed into the code of
the system one such solution. This is the case in systems
such as Mecano [3], UIDE [1] and ADEPT [6] among
several others. The result typically is an inflexible
interface design process whose inner workings are
beyond the reach of the users of the system. In addition,

because of the limited scope of the implemented mapping
solution, the associated model-based system can
effectively work only within a restricted subset of the
design space for interfaces.

We claim that mappings between abstract and concrete
elements of an interface model are loose or fuzzy at best.
The mappings are highly dependent on specific
characteristics of a given user-task model. Thus, it is
more appropriate to try to build interactive tools with
which interface developers can create the mappings and
operate on them. Naturally, to build such tools we must
first be able to represent those mappings declaratively as
part of an interface model.

In this paper, we present an initial interactive approach
to establish mappings between user-task models and
concrete interface designs. The approach is built into the
MOBI-D (Model-based Interface Designer) [4] model-
based development environment. It leverages off the
ability of the MOBI-D interface modeling language to
represent explicitly the desired mappings. We have built
into MOBI-D capabilities for various types of interface-
model mappings between the various components of a
MOBI-D interface model: user-task, domain,
presentation, dialog, and user. We consider the mappings
of task to domain, domain to presentation, and task to
dialog the crucial ones in any interface design. It is our
goal that by allowing interface developers to map
interface model elements interactively, we can establish
with experience solid patterns of usage of these
mappings. Detecting such patterns can then lead to more
automated tools for model-based interface development.

The rest of the paper is organized as follows. We first
introduce the MOBI-D interface modeling language and
the architecture of MOBI-D. We then describe the
MOBI-D development cycle and illustrate it via an
example. Throughout the example, we will emphasize
the MOBI-D tools that developers use to map interface
elements to each other in order to bridge the abstract-to-
concrete gap in the design of an interface via models. We
close by summarizing the paper and pointing some of the
potential benefits of our approach.

THE MIMIC INTERFACE MODELING LANGUAGE
The foundation for any model-based interface
development environment is its knowledge representation
for interface models. In MOBI-D, we have developed a
declarative interface modeling language called MIMIC,
which is fully described elsewhere [3]. For the purpose of
this paper we will concentrate on the aspects of MIMIC
that enable support for interactive task-to-interface
mappings.

MIMIC is a meta-language that structures and organizes
interface models. It divides an interface model into model
components. The current components in MIMIC are
user-task, domain, presentation, dialog, user, and design
models. Of these components, the design model is the
unit that represents all of the mappings among the
elements in an interface. In the context of MIMIC, an
interface is made up of all the elements defined in the
user-task, domain, presentation, dialog, and user models.
Correspondingly, an interface design is the set of
mappings among those elements represented by the
design model. The MOBI-D tools that afford interactive
manipulation of the mappings do so by providing various
views into the design component of MIMIC.

THE MOBI-D INTERFACE DEVELOPMENT
ENVIRONMENT
The Model-Based Interface Designer environment [4]
supports end users and interface developers in designing
and implementing user interfaces under a user-centered
development cycle. The environment presents an open
architecture and overcomes many of shortcomings of
previous model-based systems.

MOBI-D integrates a number of design-time and runtime
tools, including:

• A user-task elicitation tool (U-TEL) to obtain user-
task models directly from domain experts.

• A set of interactive model editors. Each category of
interface elements (user task, domain, presentation,
dialog, and user type) is handled via a model editor
with specific functionality pertinent to that category.
In addition, a design model editor allows
visualization and editing of the mappings among
interface elements (i.e., the interface design as
defined by the MOBI-D modeling language)

• A task-interface model mapping tool (TIMM) that
acts as an interface design assistant. It allows
developers to make global and specific design
choices for presentation and dialog.

• A task-based interface builder. Similar to the
familiar palette-and-canvas builders but where
operations are dictated by a user-task model.

FROM ABSTRACT TO CONCRETE IN MOBI-D
MOBI-D supports a user-task centered development
cycle. A domain expert provides an outline of a user task
in textual form. Using the MOBI-D interactive model
editors, an interface developer refines this outline into
user task and domain models. The elements of these
models are then integrated by specifying the
corresponding relations among them (i.e., which domain
objects are needed in each user subtask).

In the next phase, the developer uses the interface-design
assistant tool to specify which styles, guidelines, and
dialog strategies will be applied. Then, the developer, in
possible cooperation with the domain expert or with end
users, completes the presentation and dialog using the
task-based interface builder. This interface builder is
customized according to the user-task and domain
models and the selections made for styles and strategies.

In general, the first two phases in the development cycle
define the abstract elements of the interface while the
following phases map those abstract elements to concrete
interface components. In the example that follows we
will traverse the complete development cycle and
highlight the mapping operations that take place. The
target application domain in the example is that of
military logistics.

Eliciting the User Task
Domain experts can use the U-TEL tool [5] in the MOBI-
D environment to specify directly the outline of the user
task for a target interface. In U-TEL, the end user first
types in a free-text description of the task and then
categorizes key terms as objects, actions, or actors
(users). Using the categories and the text, the end user
creates an outline of the task that gives a sense of task
decomposition and ordering. The outlines and categories
are employed in the next phase to build user-task and
domain models. Our evaluation of this tool [5] has shown
that this method of elicitation is effective for both
experienced and non-experienced computer users.

Creating User-Task and Domain Models
The outline provided by the end user must be
transformed into an interface model, and specifically into
the user-task and domain components of such model.
MOBI-D automatically builds a skeleton of those
components from the outline and category information
given by the end user. The interface developer uses the
interactive model editors to refine that skeleton into fully
specified model components. Typical operations to be
performed here are to assign data types to each domain
object, to specify subtask ordering (e.g., sequence,
unordered, optional sequence), and to input ranges of
allowed values and default values where appropriate.
This phase transforms a textual description into a model
in the MOBI-D interface modeling language.

Task-Domain Mappings: Integrating the User-Task
and Domain Models
The elements defined in the user-task and domain models
developed in the previous phase must be incorporated
into a design in the MOBI-D sense of the word. That is,
user tasks and domain objects must be mapped to each
other in order to specify which domain objects play a role
in each of the subtasks in the user task model. The
interface developer uses a MOBI-D model editor to
accomplish this integration via drag and drop operations.
The editor presents the full hierarchy of the interface
model, and allows browsing of the mappings among
elements. The interaction with this editor is very similar
to that of a file browser. In addition, MOBI-D users also
map user types to tasks in order to define which user does
what part of the task model. After this phase, MOBI-D
users will have created the design foundation that drives
the rest of the development cycle.

Task-Interface Mappings: Assisting the Design of the
Interface
Under the direction of the interface developer, MOBI-D
will now prepare the interface model for the presentation
and dialog design phases. With the support of an
interface-design assistant tool, called TIMM (Task-
Interface Model Mapper) the developer creates a number
of mappings between the task/domain models and the
concrete interface design. There are three types of
operations here as depicted in Figure 1:

• Interactor assignments. MOBI-D suggests what
interactor(s) (or widget) is preferred (high priority)
to display each of the domain objects. The
assignment depends on the data type of the object
and on a knowledge base of interface design
guidelines. The developer can browse and change
the assignments. Global operations are allowed. For
example, the developer can set that all Boolean
objects be displayed with checkboxes. This tool
affords a level of control to the developer that is
missing in previous model-based systems that
automatically generate layouts using data types. In
the automated approach, the developers of the
model-based system preset the mappings between
domain objects and widgets. In MOBI-D, these
mappings are set interactively, can always be
visualized, and can be changed as per the needs of
specific designs.

• Styles. The developer can browse and select a
number of standard styles for the interface. Styles
include features such as font groups, preferred
location of OK/Cancel button pairs and so on. It
works in a similar fashion to that of styles in a word
processing program. A style is also a type of task-
interface mapping in that it assigns entire sets of

concrete interface characteristics to the overall user-
task model

• Strategies. The developer can view and modify the
strategies that will be used to set up the dialog and
navigation characteristics of the interface. A strategy
is a type of task-dialog mapping. It answers the
question: How are the characteristics of a user-task
model reflected in the dialog of the resulting
interface. Strategies that can be set by the user in
MOBI-D include among others:

1. The number of windows desired (e.g., one
window per major subtask in the user task
model).

2. The enforcement of sequential task requirements
(e.g., follow strictly the sequences specified in
the user-task model).

3. The enforcement of value ranges for domain
objects accessible through the interface.

Note, for example, that the number-of-windows strategy
is a simple tree-to-tree mapping. Assume a user-task
model (represented as a tree in MOBI-D) with multiple
levels of decomposition. Setting the number of windows
slide bar completely to the left will mean that the
resulting interface design will be mapped to a single
window. This would meat that the top task and all of its
subtasks in the user-task model will be accomplished by
the end user via this window. Setting the slide bar to next
allowed discrete value to the right will break the resulting
interface design into as many windows are there are
immediate children of the top task in the user-task
model. Moving the slide bar further to the right will be
going doing level by level on the user-task tree and
consequently increasing the number of windows in the
resulting interface.

As a group, these features give the developer control over
how the interface will be designed. The tool functions as
a collection of automation knobs that can be set by the
developer to full, none, or somewhere in between. Our
initial evaluation indicates that developers “turn the
knobs” up as they gain familiarity with the environment
(and possibly develop confidence in it).

Task-Interface Mappings: Presentation and Dialog
Design
This phase is completed by the interface developer
(possibly cooperating with end users) using an interface-
builder like tool as shown in Figure 2. This tool,
however, differs significantly from conventional interface
builders in the sense that it is guided by the user-task
model and by the selections made in the styles and
strategies phase. The developer moves down the user-task
model and for each leaf in the user task model tree (top
window) selects a widget. MOBI-D orders the possible
widgets for each task according to their priority (as set in

the previous phase). The developer is free to use a
different widget at this point, however. Essentially, for
each widget selected and placed on the canvas, the
developer has established a mapping between an abstract
user-task element and a concrete interface one.

Because the presentation and dialog design are at all
times guided by the interface model, there is a clear
connection between each widget and its relevance in the
overall user task. Moreover, the developer is assured to
have provided interaction functionality for the complete
user task model. Furthermore, end users find it easy to
understand the selection of a particular widget since a
connection is clear between the widget selection and the
task outline that they provided at the beginning of the
design process.

SUMMARY
We have presented some initial prototypes to allow
interface developers to map interactively task models to
concrete interface designs. We claim that developing a
thorough understanding of such a mapping process is the
key to the success of model-based systems. We expect
that by gathering experience with these tools, we will
start detecting patterns of use of these mappings. The
patterns can be the foundation for a theory of task-
interface mapping.

ACKNOWLEDGEMENTS
The work on MOBI-D is supported by DARPA under
contract N66001-96-C-8525.

REFERENCES
1. Foley, J., et al., UIDE-An Intelligent User Interface

Design Environment, in Intelligent User Interfaces, J.
Sullivan and S. Tyler, Editors. 1991, Addison-
Wesley. p. 339-384.

2. Puerta, A. and Eriksson, H. Model-Based Automated
Generation of User Interfaces, in Proc. of AAAI'94.
1994: AAAI Press.

3. Puerta, A. R. The MECANO Project: Comprehensive
and Integrated Support for Model-Based Interface
Development, in Proc. of CADUI96: Computer-Aided
Design of User Interfaces. 1996. Namur, Belgium.

4. Puerta, A. R. A Model-Based Interface Development
Environment. IEEE Software, (14) 4, July/August
1997, pp. 40-47.

5. Tam, R. C.-M., Maulsby, D., and Puerta, A. U-TEL:
A Tool for Eliciting User Task Models from Domain
Experts, in Proc. of IUI98: 1998 International
Conference on Intelligent User Interfaces. 1998. San
Francisco, CA: ACM Press.

6. Wilson, S. and Johnson, P. Beyond Hacking: A Model-
Based Approach To User Interface Design, in Proc.
of HCI'93. 1993.

Figure 1. The Task-Interface Model Mapper.

Figure 2. The task-based interface builder.

