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Abstract: This paper describes how we applied the PROTÉGÉ-II architecture to build a knowledge-
based system that configures elevators. The elevator-configuration task was solved originally with
a system that employed the propose-and-revise problem-solving method (VT; Marcus, Stout &
McDermott, 1988). A variant of this task, here named the Sisyphus-2 problem, is used by the
knowledge-acquisition community for comparative studies. PROTÉGÉ-II is a knowledge-engineer-
ing environment that focuses on the use of reusable ontologies and problem-solving methods to
generate task-specific knowledge-acquisition tools and executable problem solvers. The main goal
of this paper is to describe in detail how we used PROTÉGÉ-II to model the elevator-configuration
task. This description provides a starting point for comparison with other frameworks that use ab-
stract problem-solving methods. Starting from a detailed description of the elevator-configuration
knowledge (Yost, 1992), we analyzed the domain knowledge and developed a general, reusable do-
main ontology. We selected, from PROTÉGÉ-II’s library of preexisting methods, a propose-and-re-
vise method based on chronological backtracking. We then configured this method to solve the
elevator-configuration task in a knowledge-based system named ELVIS. We entered domain-specif-
ic knowledge about elevator configuration into the knowledge base with the help of a task-specific
knowledge-acquisition tool that was generated from the ontologies. After we constructed mapping
relations to connect the domain and method ontologies, PROTÉGÉ-II generated the executable prob-
lem solver. We have found that the development of ELVIS has provided a valuable test case for eval-
uating PROTÉGÉ-II’s suite of system-building tools.

1 PROTÉGÉ-II AND SISYPHUS-2
To evaluate a general architecture for software development, developers must test the architecture with real-
world tasks. The best way to validate the strengths and to discover the weaknesses of an architecture is to
apply the ideas and tools of the architecture to a task that is similar in size and complexity to tasks found in
the real world. The PROTÉGÉ-II architecture is a set of tools and a methodology for developing knowledge-
based problem-solving systems. The Sisyphus-2 problem is a large-scale task of configuring elevator sys-
tems; it is a variant of the problem solved by the VT system (Marcus, Stout & McDermott, 1988). This paper
describes how we used the PROTÉGÉ-II architecture to solve the Sisyphus-2 problem.

The knowledge-acquisition research community selected the Sisyphus-2 task as a benchmark for comparing
knowledge-modeling approaches, problem-solving methods, and reusability of knowledge structures. This
elevator-configuration task consists of selecting appropriate components and dimensions to configure an el-
evator system according to user specifications and safety constraints. Our knowledge base for this task is
primarily defined by the Sisyphus-2 document (Yost, 1992) and by a proposed ontology for configuration
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design and the Sisyphus-2 task.1 To provide an idea of the problem description, we list in Figure 1 the sec-
tion headings of the Sisyphus-2 document (Yost, 1992). This document is pivotal to our work with
Sisyphus-2 because it provided all the essential information, concrete data, and well-documented formulae
in this complex domain. A secondary source of information about the elevator-configuration task, associated
tools, systems, and problems is the literature about SALT, a knowledge-acquisition system developed for the
original VT task (Marcus & McDermott, 1989).

A core idea for the success of Sisyphus-2 is the use of ontologies that describe terminology and knowledge
appropriate for the elevator-configuration task. Such ontologies should facilitate the comparison of prob-
lem-solving methods developed in different theoretical frameworks (for related issues about sharing and re-
use, see the ARPA Knowledge-Sharing Effort—e.g., Neches, Fikes, Finin, Gruber, Patil, Senator, &
Swartout, 1991). In PROTÉGÉ-II, we use the word ontology in the same sense as in Ontolingua (Gruber,
1993).

PROTÉGÉ-II is a knowledge-engineering environment that enables developers to define knowledge-acqui-
sition tools and knowledge systems by reusing problem-solving methods and domain ontologies. The
PROTÉGÉ-II architecture emphasizes the automatic generation of knowledge-acquisition tools and perfor-
mance systems from declarative, domain-oriented knowledge structures. The original description of SALT’s
goals is almost identical to a description of our goals:

SALT is a program that acquires knowledge from an expert and generates a domain-specific knowledge
base compiled into rules. SALT then combines this compiled knowledge base with a problem-solving
shell to create an expert system. SALT maintains a permanent, declarative store of the knowledge base
which is updated during interviews with the domain expert and which is the input to the compiler/rule
generator. It is this intermediate language which represents knowledge by function. (Marcus & McDer-
mott, 1989, p. 3)

1 The text document as well as the ontologies and the knowledge bases are available as computer files through anon-
ymous ftp from ksl.stanford.edu.

1. Introduction
1.1 A configuration scenario
1.2 System scope
1.3 Assumptions
1.4 Using this document

2. Elevators
3. Required Information
4. Building and Component Dimensions

4.1 Vertical hoistway dimensions
4.2 Car dimensions
4.3 Counterweight dimensions
4.4 Horizontal hoistway dimensions
4.5 Overhead hoistway dimensions
4.6 Pit dimensions

5. Component Selection
5.1 Door
5.2 Platform
5.3 Sling
5.4 Safety
5.5 Crosshead

Figure 1: The table of contents of the Sisyphus-2 document gives an overview of the document that
describes the elevator-configuration problem. Sections 1 and 2 provide an introduction to the
general concepts of elevator configuration; Sections 3 and 8 define the input and output of the task;
Sections 4 through 6 list all the domain components and dimensions, as well as the formulae to
calculate them; Section 7 explains which constraints exist and how they can be fixed; and Section 9
gives the input and output values of relevant design parameters for one test case.
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5.11 Deflector sheave
5.12 Machine
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6. Loads and Moments
6.1 Hoist cable loads
6.2 Compensation cable loads
6.3 Control cable loads
6.4 Total loads
6.5 Safety loads

7. Constraints and Modifications
8. Output Parameters
9. Test case
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The knowledge-acquisition tools generated by PROTÉGÉ-II are task-specific. This characteristic is a critical
difference between PROTÉGÉ-II and systems such as SALT; SALT is based on the propose-and-revise meth-
od and takes a domain-independent approach to acquiring knowledge. In contrast, PROTÉGÉ-II’s architec-
ture is method independent, but builds task-specific tools for knowledge acquisition. We believe that
knowledge-acquisition tools will be usable by domain experts only if those tools use the domain-specific
terms and concepts that are familiar to the experts.

Sisyphus-2 adds a slightly different focus by stressing the reusability of the knowledge used to solve the
task. Contributors to Sisyphus-2 were strongly encouraged to use a set of ontologies and knowledge bases
distributed with the call for participation. However, much of this knowledge is actually the output of what
we would consider to be part of PROTÉGÉ-II’s domain-modeling and knowledge-acquisition phases. Thus,
to demonstrate our methodology and development tools, we must begin earlier in the task-modeling process,
beginning with a domain expert’s description of the task—in this case, the Sisyphus-2 document (Yost,
1992).

We used PROTÉGÉ-II to develop a knowledge-based system, ELVIS (ELeVator configuration In Sisyphus),
that solves the Sisyphus-2 problem. In addition to a run-time system that solves the task, ELVIS includes
various intermediate knowledge structures and editing tools as provided or required by the PROTÉGÉ-II ar-
chitecture. Although many aspects of PROTÉGÉ-II have been documented elsewhere (for a recent overview,
see Puerta, Egar, Tu, & Musen, 1992), we provide, in Section 2, an introduction to PROTÉGÉ-II’s main con-
cepts and building blocks—the various ontologies, tools, and development steps—that are employed to pro-
duce a knowledge system. In Section 3, we provide a detailed analysis of the knowledge contained in the
Sisyphus-2 document. This analysis is the basis for the concrete structure of the domain and method ontol-
ogies. Section 4 describes the domain ontology and how PROTÉGÉ-II uses this ontology to generate a
knowledge-acquisition tool for the Sisyphus-2 problem. Section 5 presents our configuration of the pro-
pose-and-revise problem-solving method, as well as the final run-time solution. Finally, in Section 6, we
discuss the strengths and weaknesses of the PROTÉGÉ-II architecture that we discovered while modeling
the Sisyphus-2 problem.

2 APPROACH TO KNOWLEDGE MODELING
The PROTÉGÉ-II architecture emphasizes the importance of domain-specific knowledge-acquisition tools,
and provides a system-development environment and a development methodology to generate such knowl-
edge-acquisition tools automatically. The knowledge acquired with these tools is then used by the selected
and configured problem-solving method to generate a run-time system that solves the given problem. 

PROTÉGÉ-II is more than just a methodology; it is an operational system implemented on the NeXT plat-
form. The system consists of a suite of tools that allows developers to define ontologies, to design knowl-
edge-acquisition interfaces, and to generate run-time systems. The main reasoning engine and knowledge-
representation format for domain-knowledge instances is provided by the CLIPS production language, a sys-
tem implemented in C and available on many different computer platforms.2 The language used to define
ontologies in PROTÉGÉ-II, MODEL, is an extension of CLIPS’s object-oriented language (for more details,
see Walther, Eriksson & Musen, 1992, and Gennari, 1993). The definition of ontologies in the PROTÉGÉ-II
architecture is supported by MAÎTRE (see Section 4.3), a special frame-based editor for building and main-
taining MODEL structures. These MODEL ontologies are then used by DASH, a subsystem that generates
knowledge-acquisition interfaces (see Eriksson & Musen, 1993, and Section 4.4). The development envi-
ronment and the knowledge-acquisition tools generated with PROTÉGÉ-II depend on the NeXTStep oper-
ating system and its user-interface software.

In Figure 2, we summarize the interplay of the different building blocks of PROTÉGÉ-II. The construction
of a knowledge-based system (sometimes also called a problem solver, or a performance system) starts from
a declarative description of the domain and of the problem-solving method: the domain and method ontol-
ogies. The developer merges these ontologies to produce an application ontology that is both domain- and
method-specific. Next, DASH builds a knowledge-acquisition tool from the application ontology. The do-
main expert can then enter knowledge via this tool. To generate a run-time system, PROTÉGÉ-II interprets

2 For details about the CLIPS language and its functionality, see the CLIPS Reference Manual, available from the
Software Technology Branch, Lyndon B. Johnson Space Center, NASA, Houston, TX.
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the knowledge base created by the expert as input to the problem-solving method; the system does this by
using a set of declarative mapping relations and a mapping interpreter. In Section 2.1 through Section 2.7,
we describe, in more detail, these various building blocks and components of the PROTÉGÉ-II architecture.

2.1 Domain Ontology
Since both the representation of domain knowledge and the adaptation of general problem-solving methods
are difficult tasks, an important product of a knowledge analysis is the definition of a domain ontology. Such
a domain ontology declaratively defines a language that is used to express all kinds of domain knowledge.
A domain ontology in PROTÉGÉ-II is a framework that defines the knowledge structures (classes, relations,
functions, and object constants) that a domain expert will fill in with domain-knowledge instances. For the
Sisyphus-2 problem class, the domain ontology is composed of the definitions of all parts, dimensions, de-
sign parameters, and features of an elevator system, as well as of their internal relationships, such as part-
of relationships, functional links between components, and constraints.

The basic structure of an ontology modeled in PROTÉGÉ-II is a straightforward IS-A hierarchy. This type
of hierarchy allows for different levels of abstraction and representational choices for a given domain. For
example, in the Sisyphus-2 domain, we could choose to model just a single level of components, listing each

Figure 2: Overview of the building blocks and system-development steps. Reusable domain and method
ontologies are combined into a task-dependent application ontology. The knowledge instances are
acquired with the generated knowledge-acquisition tool, and then are transformed into an executable
knowledge-based system by the mapping interpreter. Finally, a task instance is solved by acquiring
runtime input (not shown here) and executing the code supplied by the selected and configured method.

Method ontologyDomain ontology

Application ontology

Mapping relations

Mapping interpreter

Domain knowledge Method requirements

Augmented domain
knowledge

Application KA tool

Method body

Knowledge-based
system

Method knowledge
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domain term as a separate class: elevator door, car, car telephone, hoistcable, and so on. Alternatively, we
could provide a set of intermediate and high-level abstractions, such as a car assembly, a door system, the
cables, or the set of all input parameters. Such abstractions make it easier to work with complex ontologies
by taking advantage of inheritance mechanisms, and preserve natural groupings of domain knowledge. In
addition, abstract-level classes may be more easily reused across different tasks.

An important feature of a domain ontology is versatility: it should allow for different models and views of
the domain. For example, a single domain may be modeled differently depending on the task to be solved.
Even with the same task, different domain experts may have different views of the domain. If we can rep-
resent these different views of the task, we can build user-specific knowledge-acquisition tools. As well as
providing versatility, we must also maintain consistency across different ontologies; thus, all concepts must
be defined axiomatically. For example, if a domain ontology includes logical expressions, that ontology
must include a declarative definition of legal expressions that lists all the allowable logical terms and defines
their relations to other concepts in the ontology.

Despite the relative leeway in defining an ontology, the entities defined in the domain ontology are not to be
confused with method-related concepts—on the contrary, it is desirable to keep such procedural knowledge
out of the domain ontology. For example, the notion constraint is used heavily in the Sisyphus-2 document,
presumably originating from general design notions or from the experts’ natural-language explanations.
However, the use of this constraint notion does not necessarily require the use of a constraint-based method
to solve the problem. Similarly, the concept variable in the description of the elevator domain should not be
confused with that of a state-variable in a search algorithm. Such correspondences—even if they are simple
one-to-one mappings—are established only through explicit mapping relations (Gennari, Tu, Rothenfluh &
Musen, 1993).

A useful domain ontology should be able to take advantage of specialized knowledge types present in the
application domain. For example, a developer may want to specialize the concept of a domain variable to
the concept of a design parameter that includes more knowledge about expected values. This knowledge can
provide better support for knowledge acquisition and for knowledge-base maintenance or verification. In
addition to a thorough knowledge analysis that tries to abstract recurrent patterns from the domain, an im-
portant step in the design of a domain ontology is to think about how knowledge will be acquired from do-
main experts. We illustrate this point in Section 4.4 in more detail.

Finally, the definition of any ontology—which may easily consist of hundreds of objects, classes, and
slots—should be supported by a specialized knowledge editor. The MAÎTRE subsystem (Gennari, 1993) al-
lows easy navigation and context-sensitive editing support for ontologies. MAÎTRE produces a MODEL de-
scription of the ontology that can be used by other PROTÉGÉ-II modules, such as the DASH module and the
run-time system. In Section 4.3, we illustrate MAÎTRE’s functionality with our version of the domain ontol-
ogy.

2.2 Method Ontology
In the PROTÉGÉ-II architecture, all knowledge about method-related concepts is stored in a method ontol-
ogy. This method ontology describes domain-independent method concepts, in contrast to the domain on-
tology, which describes method-independent domain concepts. Method ontologies are abstract descriptions
of the inputs and outputs of the problem-solving method. For example, Figure 3 shows our method ontology
for the propose-and-revise problem-solving method. This ontology defines domain-independent concepts
such as state-variables, constraints, and fixes. To apply this method to a task, developers must instantiate
these concepts with information from the domain. Thus, the method ontology describes the knowledge re-
quirements and the knowledge roles of a given problem-solving method.

We believe that creating a declarative method ontology is an important step toward method reuse. Develop-
ers can reuse methods only if they are described in abstract terms: as an approach to solving a class of prob-
lems, rather than as a specific technique to solve a particular task. Constructing an accompanying method
ontology automatically forces the developer to think about the method in more abstract terms. Such ontol-
ogies may also clarify differences between similar methods, and may help the developer to recognize when
an existing method can be reused with a new domain. For these reasons, the method ontology serves as an
important index for method selection.
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2.3 Method Selection and Method Configuration
A pre-existing problem-solving method may not be exactly appropriate for a given task in a given domain.
Problem-solving methods for specific tasks are defined in a two-step process (Eriksson, Musen, Shahar, Pu-
erta & Tu, 1992):

1. Method selection, where the developer selects a generalized problem-solving method from a li-
brary of available methods; if many method candidates are available, this step may include meth-
od evaluation to determine the most appropriate method.

2. Method configuration, where the developer adapts the abstract problem-solving method to the
task at hand.

The method-selection process is constrained by many decisions; usually, there is no simple, direct link be-
tween tasks and methods. Often, external decision factors are critical to the choice of method. These factors
include the availability of method expertise, access to alternative methods, project resources, and the knowl-
edge engineers’ expertise about a given task. In some cases, these external factors may mean that method
selection occurs before knowledge analysis, thereby influencing the design of the domain ontology. This
scenario can often lead to an inefficient system or to an awkward domain knowledge representation.

Knowledge about the given domain (available in the domain ontology) may lead the developer to make
changes in a generic method through method configuration. A generic problem-solving method should be
decomposable: it should be divisible into some sequence of subtasks, which in turn are solved by other
(smaller-grained) methods. We call a method that is not decomposable a mechanism; mechanisms can be
viewed by the developer as black boxes. Changing or configuring the method to fit a specific task often in-
cludes replacing a mechanism with one that is more appropriate or efficient for the given task and domain.
(For a thorough discussion of PROTÉGÉ-II’s perspective on mechanisms and methods, see Puerta, Tu &
Musen, 1993.)

These changes, however, should be made in a principled way and should not include loopholes that allow
unconstrained ad hoc programming. For example, domain-knowledge analysis may reveal that there is a
static dependency structure among variables. The system developer may then create a method specializa-
tion, replacing the mechanism that recalculates the value of all parameters with a mechanism that recalcu-
lates only those parameters that depend on changed values. This specialization process is different from ad

Figure 3: The method ontology for the propose-and-revise method. The method expects particular
information that has to be provided by the application ontology.

  Propose and
revise

Constraints :
     condition
     expression
     name

Fixes :
     variable
     desirability
     name

State-variables :
     input-variable
     output-variable
     name
     initial-value

Fix-constraints :
     fixesList

Change-fix :
     assignValue

Upgrade-fix :
      domainClass
      keySlot
      upgradeSlot

Assign-constraints :
     variable

Increase-fix :
     incAmount

Decrease-fix :
     decAmount
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hoc programming, because the method ontology and the decomposition of the method into mechanisms ex-
plicitly defines and constrains where such changes can be made and what knowledge is involved in a given
alteration.

2.4 Application Ontology
In many cases, the knowledge requirements in the selected method ontology will suggest an adaptation of
the domain ontology. For example, developers may modify the domain ontology by acquiring and adding
method-dependent knowledge, or by transforming some of the knowledge into a representation that is better
suited for a particular method. By adapting the domain ontology, the developer builds an application ontol-
ogy: a middle ground between the method and the domain ontologies. This ontology is distinct from the do-
main ontology because of reuse considerations: Although domain ontologies usually originate from
reusable, static sources—such as technical handbooks, databases, and terminology knowledge bases—the
intended use of the application ontology is specific to a particular task, and may not be as reusable as other
types of ontologies.

For example, an inventory program, a cost-estimation program, a computer-aided drawing program, and an
integrated manufacturing system may access the same global domain ontology. However, knowledge about
how to fix violations of constraints in a configuration process is not important to any of these programs.
Thus, the notion of violations and constraints are defined in our application ontology, but not necessarily in
the general-purpose domain ontology for elevators. Construction of the application ontology is a non-auto-
mated task: The developer must compare the domain and method ontologies and construct the application
ontology by adding domain-specific distinctions required by the method and removing unneccessary do-
main concepts. This complex modification process is one reason that it is important to have a single editing
tool, MAÎTRE, for working with any ontology. Although we generally view application ontologies as less
reusable, over time, an abstraction process from several different tasks may lead to the migration of reusable
classes and terms from an application ontology to a reusable domain ontology.

2.5 Mapping Relations
The final connection between the problem-solving method’s concepts and the basic terms defined in the ap-
plication ontology is made by a set of mapping relations. For each knowledge role defined in the method
ontology, corresponding role fillers have to be established in the application ontology. For example, the
functional role of constraint knowledge in a constraint-based method could be embodied in the application
ontology as the specification of ranges for the values of a design parameter. These ranges would need to be
transformed into constraint expressions by mapping relations. Furthermore, such a constraint might be rep-
resented as a rule in a knowledge base, thus also requiring the identification of the single (constrained) vari-
able for the construction of a dependency network of parameters. Other examples are the transformation of
knowledge that is provided in the application ontology in tabular form, to a set of rules (one for each table
cell) that can be used by the selected method.

Instead of having explicit mapping relations, we could modify the problem-solving method directly to re-
flect the structure of the domain ontology. However, although this approach avoids the overhead of an addi-
tional task-specific ontology (the application ontology), it also makes the problem-solving method and its
ontology less reusable. In general, this problem raises questions such as: Should the domain ontology or the
problem-solving method be the primary target for reuse? Will the new application ontology be easy to main-
tain? Is the adaptation of the knowledge base computationally tractable? We advocate the use of explicit
mapping relations because they lower reuse cost and keep the various adaptations transparent (Gennari et
al., 1993).

2.6 Application-Domain Instances
If the application ontology is in place and the method is configured appropriately, application-domain in-
stances provide the actual content of the application problem knowledge. These instances are acquired from
domain experts through the use of specialized, domain-specific knowledge-acquisition tools, and define all
the concrete knowledge that does not change across specific problems. In PROTÉGÉ-II, knowledge-acqui-
sition tools are generated from the application ontology by the DASH subsystem (see Eriksson & Musen,
1993, and Section 4.4). The design and layout of the knowledge-acquisition tool is domain specific and
should enable the domain experts to enter their knowledge and data in a natural way.3 
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In the Sisyphus-2 problem, the configuration knowledge is separated into input specifications (Section 3 of
Yost, 1992) and into static domain knowledge (Sections 4 through 6 of Yost, 1992). Whereas the definition
of the domain ontology depends heavily on knowledge analysis, the acquisition of domain-knowledge in-
stances for the Sisyphus-2 problem is mostly a matter of translating and entering the information provided
in the written document. The decisions about what knowledge should be included in the ontologies and what
should be supplied either with the knowledge-acquisition tool or as run-time input are dependent on the sys-
tem’s design and application scenarios. 

Unfortunately, the structure of the domain knowledge base provided as part of the Sisyphus-2 distribution
is almost useless, because it is fully entrenched in a constraint-satisfaction point of view.4 For example, only
a flat list of state variables with cryptic names is provided, and there is almost no structure in the domain
knowledge (except for components). Although such a representation might be efficient for certain imple-
mentations, it is certainly not a good example of sharable and reusable knowledge. For example, we do not
know how and when to acquire all the definitions and values for the state variables, we do not know why
they are in the knowledge base and what role they played in the modeling process, we do not know how a
domain expert may interpret or use these variables, and we certainly do not know how we should construct
a meaningful knowledge-acquisition tool, let alone a task-specific tool to maintain the knowledge base.
However, the computer files were useful as a starting point for our work in Sisyphus-2. We were able to
translate the knowledge base into a format suitable for PROTÉGÉ-II, and were able to test parts of our meth-
od without needing to type in all the domain knowledge. We also used the knowledge base to check for in-
consistencies with the textual Sisyphus-2 problem description and to resolve ambiguities in our
interpretation.

2.7 Run-Time System
The input data that define different problem instances are supplied to the system as run-time knowledge. In
addition to input data for a particular problem, this type of dynamically changing knowledge also includes
answers to any questions that the knowledge system might ask during its search for a feasible solution. De-
fault values or initial assumptions may be supplied as run-time knowledge or as part of the domain ontology,
depending on the anticipated reuse. For example, it makes sense to add special knowledge to the ontology
if certain defaults are used across many problem instances. This knowledge may be a general rule, such as
to always start with the cheapest elevator component, or it may be a set of default choices that was elicited
from the domain expert by the knowledge-acquisition tool. 

Regardless of how this knowledge is provided, the ontology should mark this type of information explicitly
as input or default knowledge. This explicit representation will provide easy access to this kind of knowl-
edge and will allow changes according to special problem needs. For example, the selected method might
automatically check that all input values are present and that all default values are used as a first approxi-
mation. Due to the scenario choices made for Sisyphus-2, the current implementation of the run-time system
receives all its input parameter values and some default assumptions from a simple text file.5 

3 INITIAL PROBLEM-SOLVING APPROACH
In this section, we give an overview of PROTÉGÉ-II’s approach to structuring a domain problem by discuss-
ing the phases encountered during the development of a solution and by outlining the initial task-analysis
phase. The details of developing, using, and applying the domain and method ontologies for the Sisyphus-2
problem will be described in Sections 4 and 5.

3 Because of the use of domain-specific terms and of static data entry, this approach may make it difficult for the
domain expert to perceive the intended procedural use of the knowledge that has to be supplied.

4 The knowledge base, as well as the Ontolingua ontologies were provided by Gruber and Runkel (1993). The
knowledge base itself is a large computer file (192KB text) that includes the definition of components and con-
straints for the Sisyphus-2 problem.

5 This simple file input is based on the idea that the input to the knowledge system can originate from interactive
questioning with special run-time tools, from a database, or from other preprocessing modules. Since the
Sisyphus-2 scenario calls for a batch type solution with no run-time interaction, there is no need for an elaborate
end-user interface other than a routine that acquires all input information and stores the data appropriately. The
choice to use a simple text file is also consistent with the Ontolingua representation of the Sisyphus-2 task pro-
posed by Gruber and Runkel (1993). (A simple translation of this file can be used as input to our system.)
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3.1 Development Phases
In tackling the Sisyphus-2 project, we were confronted with several conceptual problems and system-devel-
opment issues. First, many applications of PROTÉGÉ-II and its predecessors are rooted in the medical do-
main; for example, one of the best explored problem-solving methods originates from the management task
for clinical-trial protocols (Tu, Shahar, Dawes, Winkles, Puerta & Musen, 1992). Working with configura-
tion tasks in an engineering domain requires flexibility both from our architecture and from its users. Since
PROTÉGÉ-II is developed as a domain-independent and method-neutral architecture, the use of a new do-
main and a new method is a good test for our approach. Other approaches, such as generic tasks
(Chandrasekaran, 1987) or role-limiting methods (McDermott, 1988), advocate the development of task- or
method-specific knowledge-acquisition tools and problem-solving methods. The feasibility and success of
these frameworks depends on the availability of appropriate methods. If a task (or the appropriate method)
is not defined in the respective framework, a new task (or method) has to be added. Since our effort included
method development and configuration, it should be compared to the effort needed in other frameworks to
add such a method or task. 

Furthermore, the development of a system according to the requirements specified in the Sisyphus-2 Call
for Contributions had to be intertwined with our priorities and work on the general PROTÉGÉ-II architec-
ture. Therefore, our approach to the Sisyphus-2 problem was somewhat different than what it might have
been had we undertaken the project in isolation from our research efforts. The following are the major de-
velopment phases that we used in constructing the current solution for the Sisyphus-2 problem. These steps
are described in full detail in the remainder of this paper.

1. We achieved familiarization with the domain through individual study of the Sisyphus-2 docu-
ment (Yost, 1992) and group discussions.

2. We performed a thorough analysis of domain knowledge on the distributed document. This step
included a major rewriting of the document and the construction of an executable calculation
model (see Section 4.1).

3. We constructed a prototype domain ontology as well as a prototype run-time system, without go-
ing through the full PROTÉGÉ-II development cycle (i.e., no knowledge-acquisition tool was
generated to acquire and enter all the domain knowledge). Sections 4 and 5 describe our work
on the domain and method ontologies.

4. We made ontology revisions several times. Most revisions were either to accommodate new fea-
tures of PROTÉGÉ-II (such as changes in the knowledge-acquisition tool generation process) or
to reflect conceptual changes that occurred with respect to our work on mapping relations (Gen-
nari et al., 1993).

5. We developed a production version of a solution, ELVIS, with the current implementation of the
PROTÉGÉ-II system. This production version includes all the architecture’s building blocks as
outlined in Section 2, and finds a solution for the test case provided in Section 9 of Yost (1992).

In Sections 3.2 and 3.3, we shall present some general issues and problems that we encountered when ap-
plying the PROTÉGÉ-II framework to the Sisyphus-2 problem. The development of the actual ELVIS system
is discussed and illustrated in Sections 4 and 5.

3.2 Initial Task Analysis
PROTÉGÉ-II views a task as an activity, or an abstraction of an activity, that is performed in the real world.
A task instance is a particular instantiation of such a task that can be characterized by the types of its input
and output. Further decompositions of the top-level task become apparent only after a particular method is
chosen, because only methods specify the knowledge required to get from the input to the desired output. 

The domain problem, as presented in the Sisyphus-2 project documentation (Yost, 1992) and in the
Sisyphus-2 Call for Contributions, can thus be analyzed at the top-level as a task—namely, elevator config-
uration. The input to this task consists of a list of configuration parameters, some of which have default val-
ues. The output is another, partially overlapping list of parameters (Sections 3 and 8 of Yost, 1992) that need
to have defined values after the task is completed. The set of input parameters can be subdivided further into
an assumption set and a user-input set, where only the latter is supposed to vary from task instance to task
instance.

Additional task information is provided as a collection of “formulae,” “rules,” and “constraints” (Sections 4
through 7 of Yost, 1992) that defines a precise set of mathematical relations among the values of the config-
uration parameters. A subset of these rules defines a calculation model whose execution exactly defines the
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values of all output parameters for a given set of input variables. Furthermore, another set of rules, called
constraints (Section 7 of Yost, 1992), includes a list of constraint fixes. This list is partially ordered along
an ordinal scale of desirability, and is designed to correct the problem identified by the associated rule; in
other words, a constraint fix should alleviate a constraint violation.

The full Sisyphus-2 task, then, consists of executing the calculation model with a given set of input values,
and adjusting the parameters until there are no constraint violations. For most input-value combinations
(also called customer specifications), some constraints will be violated after the calculation of the values of
all output parameters. To correct this situation, the system must take appropriate actions, which may require
the adjustment of “free” parameters in the model.6

As far as PROTÉGÉ-II is concerned, this analysis concludes the characterization of the top-level Sisyphus-2
task. Only after the selection of a method will we be able to specify further subtasks and their knowledge
requirements. The method-selection process is in turn constrained by (1) the availability of methods, and
(2) the availability of required domain knowledge. It usually consists of trading off computational advan-
tages (e.g., efficiency, ease of representation) against the time and effort required to elicit domain knowledge
(e.g., costs of knowledge acquisition, availability of expertise). Once an appropriate method is selected, the
overall task can be decomposed into smaller subtasks, which in turn need to be analyzed and solved.

3.3 Reusability Considerations
Reusability considerations play an important role in major system-design decisions. Although we might be
tempted to ask for reusability of all components all the time, several trade-offs have to be made that enhance
or hinder future reusability. Furthermore, reusability for the Sisyphus-2 problem is a somewhat artificial
idea, because there is no actual scenario or a real-world demand for elevator-configuration reuse. Only with
such real-world scenarios can reuse be evaluated against its overhead costs. These costs include the extra
amount of work in development of generic ontologies, as well as that of maintenance and version control to
keep ontologies up to date. In addition, the effort required to adapt generic ontologies to a specific problem
and the time to learn and use “foreign” ontologies have to be balanced against a development from scratch—
that is, against the effort to build a custom-tailored solution with familiar, conventional techniques.

Further system-design questions arise when we take a closer look at the different modalities of reuse: It is
important to ask not only what gets reused (targets), but also when and by whom such a reuse is feasible (see
also Musen, 1992). Three building blocks of PROTÉGÉ-II are main targets for reuse: the abstract domain
ontologies, the domain-independent methods, and the generic mapping relations that link together an appli-
cation ontology and a configured method. Since both the application ontology and the configured method
include highly task-specific knowledge, they are less likely candidates for reuse. However, even within these
categories, there are many different levels of abstraction and generality that influence reusability. Different
types of ontologies can be reused in different scenarios: general-purpose domain ontologies could be used
for many different tasks. For example, general physical, mathematical, logical knowledge types or standard-
ized measurement unit ontologies could be employed as background knowledge for the calculation of for-
mulae or to develop domain ontologies that can be used either with SI-units or with the U.S. unit system. In
contrast to these general-purpose ontologies, Domain-specific ontologies could be reused for different tasks
in the same domain. For example, an ontology for elevators could be reused for a stockkeeping, for an ac-
counting, for an ordering, or for a configuration task. Only application ontologies are both task- and meth-
od-specific, making them too custom-tailored for reuse.

Reuse is also possible at different phases of system development. For PROTÉGÉ-II, we envision the follow-
ing development phases as targets for potential reuse. During system development, the reuse of general do-
main ontologies, shared ontologies, method ontologies, and application ontologies may speed up the
construction of new systems. The global ontologies provided as part of the Sisyphus-2 distribution were re-
used in ELVIS after initial modifications. These modifications consisted of syntactical changes to accommo-
date differences between Ontolingua and MODEL and to account for our own variable namings. During
knowledge acquisition, the reuse of previous domain instances and of pre-existing application ontologies
may enable a faster start-up. For example, we reused instance information from the Sisyphus-2 distribution

6 Note that not all non-input parameters are “free” model parameters (i.e., can be modified without restrictions).
Furthermore, not all input parameters are fixed—that is, some may be changed during problem solving. We shall
return to this point in Section 4.
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such as model information and constraint expressions. Finally, run-time systems can benefit greatly from
data sets that are available in a standardized, method-independent representation. We reused the test-case
values from Section 9.1 of Yost (1992) to validate ELVIS’s solution.

Tightly coupled to the issue of the time of reuse is the issue of who may benefit the most from different kinds
of reuse. Knowledge engineers are likely to gain the most from abstract domain and method ontologies for
the initial structuring of a new problem. Configured methods and reusable instances would speed up the con-
struction of executable prototypes that can be used to do further knowledge acquisition or to compare dif-
ferent approaches. Domain experts could benefit from the structure of reusable domain ontologies that
would organize their knowledge in a consistent way. They would also value the availability of instantiated
domain knowledge bases in a standardized format. Special knowledge or classified information could then
be added to complete the acquisition of domain-knowledge instances. 

In conclusion, we can specify the precise benefits that are expected from reuse only after knowing more
about the context of such reuse and after evaluating the costs of different options. Crucial to any kind of
reuse is, of course, familiarity with the problem to be solved and experience with the formal framework in
which reusable knowledge is presented. Otherwise, we would be unable to recognize possibilities of reuse
in the first place, and the learning effort to master complex ontologies might not be justified by the effort
saved by reuse. In our approach to the Sisyphus-2 problem, we have tried to reuse as much as possible from
the supplied material—that is, the written problem description from Yost (1992) as well as the ontologies
and knowledge bases that were made available by Gruber and Runkel (1993) as computer files.

4 DOMAIN ONTOLOGIES
When we started to look at the domain knowledge in detail,7 it became obvious that the complexity of the
domain, the entangled network of dependencies, and the vagueness of certain statements created a difficult
starting point. We thus started to augment the plain text of the Sisyphus-2 document (Yost, 1992) to create
a more useful domain dictionary. We made the following major changes:

• The document was reformatted with a text-processing program. This reformatting allowed us not
only to take advantage of text-access and search features, but also to add the necessary code to gen-
erate a detailed table of contents, various indexes, lists of tables and figures, and to enumerate au-
tomatically the constraints in Section 7 of Yost (1992).

• All the parameters listed in Section 9 of Yost (1992) were changed to a consistent naming scheme.
In the main text, they were typographically set apart from the rest, and indexing code was added.
The index thus generated allowed easy cross-referencing of parameter usage throughout the whole
text. The parameter-naming scheme underwent two major revisions as our ontology evolved, be-
cause we wanted the document to stay consistent with the names used in the PROTÉGÉ-II system.
We envision, for a future version of ELVIS, that the document could be used in a hypertext-like way
to provide help for variable names via links to the Sisyphus-2 document. The revision of names in
the application ontology was performed mainly to enable automatic preprocessing of the supplied
ontology files.

• The test-case (Section 9.1 of Yost, 1992) was converted into a table, in which all the parameters
are listed with their values before and after a solution was found. The value changes were also com-
puted in that table. This restructuring helped us to uncover an incorrect initial assumption about
input parameters, which we had thought to be unchangeable, as they appeared to be according to
Section 3 of Yost (1992). A quick look at the “change” column in the table revealed that an input
parameter’s value had changed in the test case. Such a discovery, of course, influences the design
of the ontology: in this case, it meant that a parameter may be an input parameter as well as have
computations that change its value.

This work helped us to cover the domain knowledge systematically and to structure and manage our analy-
ses of knowledge types (see Section 4.2.2 through Section 4.2.3). However, these analyses were not suffi-
cient to make the domain knowledge transparent. The biggest problem with the description of the
Sisyphus-2 problem was the sheer number and the apparent complexity of calculations and formulae and

7 We should emphasize that we started to look at the domain in February 1993, when no ontologies or knowledge
bases were available electronically. We postulate that our approach would have changed the way in which people
gain access to Sisyphus-2’s domain knowledge. Only a comparison with other approaches at the Banff workshop
will allow us to test this hypothesis.
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the interdependencies of the parameters. This complexity made it almost impossible to judge appropriately
the effects of constraint violations and fixes. We solved these problems by applying a simple calculation
model to the domain knowledge, as provided by standard spreadsheet technology. 

4.1 A Spreadsheet Solution for Sisyphus-2
To decrease the apparent complexity of the Sisyphus-2 problem, we constructed a spreadsheet system that
provided us with a functional model of the domain knowledge in the Sisyphus-2 document. This system pro-
vided us with an executable calculation model that computed all important design parameters for the
Sisyphus-2 domain. This model allowed us to analyze the different types of knowledge provided in natural-
language descriptions, formulae, and tables in the Sisyphus-2 document. It also clarified some types of im-
plicit knowledge and demonstrated how intermediate parameters are used to help compute the output pa-
rameter values. As we shall illustrate in Section 4.2, such an analysis not only is required to make the system
actually turn over, but also heavily influences the design of application ontologies and of knowledge-acqui-
sition tools. We chose a commonly available spreadsheet system (Microsoft Excel) to develop this execut-
able calculation model. We found the following features useful:

• Representation of mathematical and logical expressions: After the document editing described in
Section 4 and the standardization of variable names, we could define formulae with a simple trans-
lation from the text.

• User interface: We used tables to build an acceptable user interface for entering component infor-
mation (see Figure 4a). This interface is almost identical to the tables used in the Sisyphus-2 doc-
ument (Yost, 1992), with the added benefit that the spreadsheet can also display simple derived
parameters and current values immediately. We used built-in functions to design a quick prototype
that could acquire all input values with prompting windows. The standard reporting features of
spreadsheets were used to display and print the required set of output parameter values.

• Developer interface: We defined a database of parameter values and associated knowledge (e.g.,
formulae, ranges, parameter type; see Figure 4b). This interface allowed us to access, inspect, and
access parameters in their functional context. Information could be arranged and displayed in al-
most any format. Dependencies among variables could be detected and reported with the help of
simple macros.

• Computation of new parameter values: The spreadsheet updates all parameter values within sec-
onds after the user enters input values or makes changes to parameter values. Constraint violations
are also signaled immediately, and we used a small macro program to collect all such violations
and to report them in a sorted list (see Figure 4c).

Essentially, we have recreated the functionality of the system mentioned in Section 1.1 of Yost (1992): a
simple calculation model used by domain experts in lieu of a Sisyphus-2 solution. Domain experts could
use our spreadsheet solution to calculate all parameter values for a given set of input data. Then, the domain
expert could manually update parameter values to solve constraint violations, and could use the same system
to compute the new output values. In addition to this executable calculation model, we developed a user-
input and output interface, and a constraint-checking mechanism. The spreadsheet system signals violations
of constraints, and provides a list of possible fixes. However, the automatic application of fixes and a prin-
cipled exploration of the possible design space were not easily implemented within the spreadsheet frame-
work. Thus, this model does not include an algorithm that automatically finds a solution. The only guidance
for modifying parameters is provided by the list of violations and possible fixes, ordered by desirability
(Figure 4c). The user can interactively change the values in the way the fixes prescribe, and can recompute
a new parameter state and check again for violations, but no help is provided to backtrack to previous states
or to trace changes.

Although this “solution” has limitations, in some situations, it may actually be more practical than a highly
sophisticated knowledge-based system, such as might be built by PROTÉGÉ-II. For example, although there
is no automatic search for a solution, the user has the chance to notice fix sequences with certain character-
istics, or to apply independent fixes in parallel. In the real world, decisions about how much of the task
should be automated will depend on workplace analyses, usability studies, cost and safety issues, and, in
general, a study of the domain expert’s capabilities with respect to real tasks.

Another reason for developing this executable calculation model with a conventional spreadsheet program
was to give us a yardstick for measuring and comparing development efforts. Spreadsheets penetrate engi-
neering domains more easily than do knowledge systems, and we believed that the main obstacle for domain
experts to develop solutions for the Sisyphus-2 problem was not at the conceptual level, but rather was at
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Figure 4: The interface of the spreadsheet solution: (a) Table interface for components; the gray areas are
designed for user input. Computed values—here the sling weights—are displayed instantly.
(b) Representation of the parameters; Column 1 references the place where the parameter is defined in the
Sisyphus-2 document. Column 2 contains the standardized parameter name. The third column contains the
formulae to compute the values, but only the result is displayed. The formulae are defined such that all
references to a parameter name will use the value displayed here in any computation. The fourth column is
used to directly enter new values. The fifth column is used to signal any constraint violations. Again, the
formula to compute the value shown in the fields is actually accessible in that field. Gray fields indicate that
there is no constraint directly associated with this parameter. Columns 6 and 7 contain range values.
Italicized values are computed from other parameters; Roman values are entered at knowledge acquisition
time. (c) Report of violations; an internal representation of possible fixes for current violations.

(a)

(b)

(c)

S Parameter Name Value Entry Fix Lower Upper
4.3 counterweight.frame.height 138 90 174
4.3 counterweight.frame.thickness 31
4.3 counterweight.plate.depth 7 7 12
4.3 counterweight.plate.thickness 1
4.3 counterweight.stack.height 80 107
4.4 car.return.left 25 1
4.4 car.return.right 3 1
4.4 counterweight.space 18.25
4.4 counterweight.to.hoistway.rear 6 1.5
4.4 counterweight.to.platform.rear 5.25 2.25
4.4 counterweight.ubracket.protrusion 0.75
4.4 door.space 6.5
4.4 opening.to.hoistway.right 16
4.4 platform.running.clearance 1.25
4.4 platform.to.hoistway.front 7.75

4.4 platform.to.hoistway.left 7
06@2@06=change(!opening.to.h
oistway.left,+1)@08=change(!car.r
eturn.left,-1)

8

4.4 platform.to.hoistway.right 13 8

03=step(!counterweight.to.platform.rear,-0.5)
04=step(!car.supplement.weight,+100)
04=step(!hoist.cable.quantity,+1)
04=step(!hoist.cable.quantity,+1)
04=upgrade(!car.guiderail.unit.weight)
04=upgrade(!hoist.cable.diameter)
04=upgrade(!machine.beam.model)
06=increase(!opening.to.hoistway.left,+1)
06=upgrade(!compensation.cable.model)
08=decrease(!car.return.left,-1)
08=upgrade(!machine.groove.model)
09=change(!machine.model,"28")

sling.table Sling Model A B C Sling Weight
Table 1 2.5B-18 1.5 1.002 56 292.20188

2.5B-21 1.75 1.002 94 347.70188
4B-GP 2.5 1.6 223 607.504
4B-HOSP 1.8 1.2 223 506.128
6C 3.1 2.2 317 822.068

current values 2.5B-18 1.5 1.002 56 292.20188

crosshead.table Sling Model Crosshead 
Model

Crosshead 
Height (in)

Rated
Crosshead
Bending 
Moment

Rated
Crosshead
Deflection
Index

Table 2 & 12 2.5B-18 W8x18 8.125 705000 84600000
2.5B-21 W8x21 8.250 850000 103800000
4B-GP C10x15.3 10.000 1340000 200700000
4B-HOSP C8x11.5 8.000 810000 96900000
6C C13x16.55 13.500 1790000 200700000

current values 2.5B-18 W8x18 8.125 705000 84600000
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the computational level. We developed the spreadsheet model in about 30 person-hours, including an 8 per-
son-hours redesign cycle to accommodate name changes and a better spreadsheet organization with no add-
ed functionality. Of course, the initial work invested in rewriting the original Sisyphus-2 document
shortened the development time considerably, because we were already familiar with the text and terminol-
ogy, and had some ideas about problematic issues. Only further experiments will show whether it is feasible
to develop systems for similar problems with conventional technologies such as spreadsheets. The effort re-
quired to learn, use, and adapt knowledge-system technology has to be balanced against that needed for cus-
tom-tailoring new systems with traditional technologies. A major problem for Sisyphus-2 is to produce a
system that is accessible and easy to use for the domain expert. Spreadsheets on personal computers may
solve this problem more easily than can knowledge-based systems. A major advantage of this technology is
the almost instantaneous feedback for many different parameter-value configurations. The ability to recal-
culate the complex model quickly and the availability of immediate feedback on any actions taken would
allow an expert to deal with constraint violations in novel and exploratory ways. 

The main disadvantage of the spreadsheet solution, of course, is its ad hoc nature. Although we are able to
abstract certain knowledge types (such as table calculations, range checking, and formula decomposition)
that are certainly reusable for other problems, there is no automatic way to translate or reuse the domain
knowledge encoded in the spreadsheet’s cells. A main side effect of this executable calculation model was
that we could check the Sisyphus-2 problem description (Yost, 1992, and our modified version) more thor-
oughly and were able to discover minor inconsistencies and several errors. These discoveries helped us to
construct and validate the current ELVIS system. However, this validation was limited, since we could test
our model with only one data set. The spreadsheet model can validate the final values as defined in
Section 9.1 of Yost (1992)—without certain errors we suspect to be present in the document. We do not
know whether the spreadsheet model is correct for other value combinations.

4.2 Knowledge Analysis and Interface Design
Knowledge analysis, the identification of different types of knowledge in a task, influences decisions on how
to represent and use domain knowledge in a performance system. One or more forms of knowledge repre-
sentations have to be chosen from a variety of knowledge-representation schemes, such as frames, object–
attribute–value triples, record structures, tables, objects, or rules. Typically, different forms of representa-
tions support the expression of different types of knowledge by providing special features that ease the task
of translating real-world knowledge into formal structures.

Domain knowledge usually comes in many different apparent structures. Lists of components and part-of
hierarchies may seem natural to describe physical objects, and rules allow domain experts to express actions
that depend on different conditions. The task of the knowledge engineer is to find appropriate knowledge-
representation formalisms that not only support the encoding of the domain knowledge, but also help with
the acquisition of that knowledge from the domain experts. If the surface structure of the representation is
too complex or requires programming experience, the domain experts may refuse to provide the relevant
knowledge, or at the least, they may find it difficult to provide, update or edit the relevant information. Thus,
domain-knowledge analysis is an important task that must find a representation that is both efficient for a
computer system and suitable for knowledge acquisition. 

PROTÉGÉ-II, like its predecessors OPAL (Musen, Fagan, Combs & Shortliffe, 1987) and PROTÉGÉ (Musen,
1989a), emphasizes the importance of representations that are modeled closely after the domain. The form-
based approach of PROTÉGÉ-II evolved from modeling the domain of clinical-trial protocols (Musen,
1989b) and represents knowledge in a way that is familiar to domain experts. These forms can be modeled
on existing knowledge representations, such as patient records, laboratory data sheets, or any format with
which the domain experts are already familiar. The study of knowledge representations and artifacts em-
ployed by problem solvers in their natural environment (e.g. Suchman, 1987, or Hutchins, 1991) takes se-
riously the problem solver’s way of structuring a task, and tries to avoid imposing artificial knowledge
representations on real-world tasks. To enable the actual use of knowledge systems and to improve accept-
ability, we follow as closely as possible the way in which people in the domain deal with the knowledge. Of
course, for the purpose of developing a computer system, many compromises or adaptations may be made
to accommodate complex knowledge structures. However, it remains the duty of the knowledge engineer to
make explicit such changes and assumptions by declaring them in a formal domain ontology. We go further
in the use of ontologies than do other proponents who see their primary virtue as providing a rigid, formal
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structure. We emphasize the communication aspect of the ontology building process. Only when the domain
experts can understand and agree with the knowledge engineer about the utility and meaning of an ontology
will the effort put into this formal adventure pay off.

Since we had no interaction with human experts, we were severely limited in our attempt to develop an ap-
propriate domain ontology for elevator experts. Our strategy in dealing with this artificial situation was to
take the document as seriously as we could with respect to the way the domain knowledge was presented.8

In the remainder of Section 4.2, we present our knowledge analysis for the Sisyphus-2 problem. We begin
with an analysis of different knowledge sources (Section 4.2.1), followed by discussions of parameter types
(Section 4.2.2), of constraint knowledge (Section 4.2.2), and of fix knowledge (Section 4.2.3). Finally, we
conclude this section by presenting our application ontology for Sisyphus-2.

4.2.1 Domain-Knowledge Sources
For the Sisyphus-2 task, domain knowledge for the elevator-configuration task originates from different
sources. The origin of information may influence the characteristics of knowledge representation, as well
as of knowledge acquisition. For Sisyphus-2, we analyzed knowledge as originating from four different
sources:

• Building specifications: dimensional information about the layout of the location where the eleva-
tor will be installed. This knowledge includes facts such as widths, lengths, and locations of archi-
tecturally given elements. This information originates with the building designer, and the problem
solver should not modify these values.

• Elevator specifications: information about the material and components supplied by the manufac-
turers of elevators from which the configuration process can choose. These specifications include
all the available parts, as well as parts’ pertinent characteristics (such as component dimensions,
weights, and allowable forces).

• External specifications: knowledge imposed on the configuration explicitly or implicitly as exter-
nally supplied constraints for legal or safety reasons. For example, legally prescribed minima and
maxima should never be changed by the problem solver.

• Customer specifications: certain components and dimensions specified by the customer (e.g., the
need for a telephone in the car cab). It was unclear to what degree such specifications could be
modified by the problem solver.

Although there is no commitment yet to a specific representation or problem-solving method, certain choic-
es that influence those decisions are already made at this preconceptual stage. The “first impression,” the
attempt to “just understand what the problem is about,” or a “quick summary” reveal certain biases on how
to view the problem. For instance, the document was clearly written with a constraint-based solution in
mind, and leaves little choice on how else to think about the problem. We could try to ignore this biased
information, but unfortunately there is no other domain knowledge available that we could use to develop
alternative approaches. Even if such a constraint-satisfaction view is adopted, the material does not allow
for much freedom in the selection of a problem-solving method. For example, the knowledge provided
seems already to contain specific heuristics concerning the optimization of other aspects of elevator config-
uration—namely, cost minimization. An example of this hidden parameter is that almost all proposed fixes
do upgrades from smaller, presumably cheaper, components to bigger ones. Without an explicit goal of min-
imizing costs and without detailed knowledge about cost structures, it is impossible to experiment with other
problem-solving methods.

Another important attribute of domain knowledge is the time at which the knowledge is used in the overall
control flow of the problem-solving process:

• Input specifications: Information to be supplied externally by the customer is represented by 26
different parameter values that are assessed at run time.

• Default values: Many design parameters have default values for an initial configuration or for sit-
uations when no values are supplied from other sources. Most of these values are likely to change
during run time. The epistemological status of this knowledge should be assessed carefully, be-

8 However, we did not follow the Sisyphus-2 document in certain procedural suggestions, as we explain in
Section 5.2.
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cause, in many instances, there is hidden, implicit knowledge available that guides the selection of
these default values (e.g., knowledge about the price of components). It may be desirable to make
explicit the justifications for default values in a refined ontology.

• Assumptions: For a variety of similar task instances, it may be advisable to make constraining as-
sumptions about certain design parameters. Assumptions will not change as long as the system’s
scope remains the same. To enable future extensions and to delineate the competence boundaries
of the system, developers should identify and label all assumptions.

• Calculations: Many design parameters are calculated from given domain formulae that refer to
other design parameters. These parameters include values defined by physical laws, as well as en-
gineering formulae and approximations.

• Output parameters: A specified set of parameters is reported when all values of the model are de-
termined and a solution is reached.

Some of the input specifications are mandatory input values that cannot be changed throughout a problem-
solving episode, but that may be different for different problem instances (e.g., building specifications, user
requirements, legal requirements, or safety factors). Other inputs are desired input values, with which the
problem solver should start, but which may need to be changed to satisfy more important constraints (e.g.,
optional features, or dimensions specified for noncritical reasons, such as aesthetic factors). A third type of
input knowledge is default input values, which provide commonly made assumptions about certain compo-
nents or parameters (e.g., available models, or default sizes of components). These different input types may
require different modes of acquisition at run time and should be treated differently by the configured prob-
lem-solving method.

4.2.2 Constraint Knowledge
In Section 7 of the Yost (1992) document, 50 explicitly labeled constraints are listed. Similar statements that
constrain possible values or calculations for parameters are scattered throughout the document. In addition,
knowledge about default or initial values could be represented as constraint knowledge. In fact, we original-
ly included such assumptions as constraints, but later decided that this knowledge was sufficiently different
to warrant its own classification. Our classification of constraints now includes three different types: assign
constraints, range constraints, and general fix constraints.

Assign constraints: “The distance top.landing.to.underside.machine.beam  is the overhead
minus the distance from the machine.room.floor.to.underside.machine. beam  …” A parameter
value is constrained by a formula that may include the values of other parameter values. In many cases, the
applicability of a general formula (e.g., computing the weight for all sling models) is further parameterized
by model-dependent conditions: “When the machine.beam.support.type  is of the pocket type, the …
machine.beam.bearing. plate.thickness  is one inch.” 

Range constraints: “The car.cab.height  must be between 84 and 240 inches, inclusive.” The (interval)
parameter’s value is constrained by acceptable boundaries. Some of these boundaries may be dependent on
preconditions. Such constraints may include a list of fixes that may be applied if the parameter falls outside
of the boundaries.

General fix constraints: “The motor.model  must be compatible with the machine.model .” Here, a pa-
rameter value (a choice of motor) is constrained by being compatible with the value of some other parameter
(the machine model). This category of constraints includes a list of fixes to be applied when the constraint
is violated. 

These three constraint types seem to cover all the constraints of the Sisyphus-2 document. Assign con-
straints provide a definition for all basic and intermediate parameters whose values can be computed by cal-
culation. Range constraints are introduced to account for different knowledge-acquisition needs—that is, to
provide a defined place to specify simple value boundaries. The last constraint knowledge type, general fix
constraints, includes a list of fixes, and covers knowledge about safety, legal configurations and compatibil-
ity. 

4.2.3 Fix Knowledge
Along with constraint knowledge, Section 7 of Yost (1992) provides information on how to fix constraint
violations. This knowledge specifies which parameter values to change and how to change them. We have
identified three types of fixes: assign fixes, step fixes, and upgrade fixes.
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Assign fixes: “Increase the counterweight.space  by the amount by which the counterweight.-
to.hoistway.rear  distance falls short of its minimum.” Parameter values are changed according to some
formula. Such fixes may also depend on preconditions that check a related parameter. The system may mod-
ify values of constrained parameters by (1) adding or subtracting the newly calculated value to the current
value or by (2) assigning a new value. In many cases, the “formula” to compute the difference between the
new and the old parameter value is just a fixed increment or decrement—a piece of knowledge that makes
the recomputation of new values easier.

Step fixes: “ … increase the counterweight.buffer.quantity  by steps of one.” This fix knowledge
assumes that several actions to repair a constraint violation can be taken in a pre-specified sequence. The
Sisyphus-2 document proposes a stepwise application of such a fix until the signaled constraint violation is
resolved. It remains unclear, however, what should happen if other constraint violations are flagged during
such a stepwise value change. Such questions about how to apply a fix depend on the problem-solving meth-
od. Regardless of the method used, the knowledge about these step fixes should be included in the domain
ontology. Thus, a special fix type provides knowledge about the direction, amount and fashion in which a
value can be modified with steps.

Upgrade fixes: “Upgrade the sling.model .”  Upgrade fixes can be applied only to ordinal parameters,
such as component models, where an ordered list of values is given. We could choose to provide the knowl-
edge to upgrade a component in many different places of the domain ontology. An obvious candidate would
be the fix knowledge itself, because that is where the information is actually used. For example, for a fix that
requires an upgrade of the sling model, we could choose to embed the new, upgraded sling model in the fix
rule itself. Such a representation requires a different fix rule for each sling model and explicitly provides the
upgraded model in its action part.

 Although this representational choice may produce efficient rules in a compiled knowledge system—given
the usually powerful matching behavior of most rule-based architectures—the scattering of knowledge may
not be a wise choice with respect to elicitation and maintenance of the knowledge. The natural representa-
tion of upgrade relations in an ordered table—used many times throughout the Sisyphus-2 document—
serves this purpose in a more elegant way. Most of the 14 explicit tables (some table-like information is giv-
en in plain text) are database-lookup tables that show the characteristics of different models. At least one
column is usually used to supply comparison information that can be used for upgrading. Typically, these
are parameters that can take only one of a fixed list of discrete, ordered values (e.g., 10, 15, 20, 25, 30, or
40 horsepower for a motor model). Some tables represent relations between two different parameters (or
models). One problem with these tables is that their order relation is given only implicitly, usually via a left-
to-right reading order. Only by making inferences from the model’s names (e.g., “DS-20” is a deflector
sheave model that has a diameter of 20 inches) or by applying other domain knowledge can we identify the
correct component. Many of the original VT and SALT publications expressly use this tabular knowledge
type and provide specific prompting schemes for table access For example, the database-lookup procedure
asks for a “table name”, a “column with needed value,” and an “ordering column.”

Due to the lack of a table representation in MODEL and DASH, we have chosen to model upgrade fixes dif-
ferently. The upgrade knowledge for every component is specified explicitly in the domain ontology: All
components include a separate upgrade slot. The value entered into that slot through the knowledge-acqui-
sition tool is then used by mapping relations (see Section 5.3) to generate individual upgrade rules for every
component. Although such a representation may not be the best way to acquire and model this knowledge,
we can avoid maintenance and consistency problems with the automatic generation of the respective up-
grade rules.

These three fix knowledge types (assign, step, and upgrade fixes) cover all the possible fix applications in
the Sisyphus-2 problem. Assign fixes allow the definition of rules that override existing values. Step fixes
are special cases of assign fixes that include some control flow information (i.e., they specify what to do
after the fix has been applied once). The third category, upgrade fixes, takes advantage of special domain
knowledge that allows for changing the selection of a component in a principled way.

The main problem with fix knowledge, as provided in Sisyphus-2, is the fact that fixes represent heuristic
knowledge that lacks sufficient justification and thus does not allow additional “depth” in reasoning and fix-
application procedures. For example, fixed increments (e.g., “increment by one inch”) are suggested in
many cases to overcome a constraint violation, but no explicit reason for the amount of change is given. Fur-
ther knowledge analysis might reveal that these fixed increments depend on external constraints that are un-
changeable (e.g., parts supplied by a subcontractor), are used for practical reasons (e.g., precision of cutting
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tools), or it may turn out that such increments have only been used to facilitate the computational aspects of
recalculating new parameter values (which is not a problem if done with a computer). This kind of knowl-
edge would not only influence the representational format but also enhance the reusability of our abstract
knowledge types because it defines applicability conditions and additional knowledge needs in a more ex-
plicit way.

4.2.4 Domain Ontology
The most crucial activity in the construction of a domain ontology is to determine a useful backbone: an
organizing structure on which developers can place different types and classes of domain knowledge. In
many domains, it is necessary to use some natural grouping of parameters into sections or logical compo-
nents. This need to group information is especially true for Sisyphus-2, where there are so many domain
relations and parameters to be managed. (The test case in Section 9 of Yost (1992) lists 161 such parameters,
and there can be many more intermediate parameters, depending on the complexity of the representation.)
Some variable groupings seem to emerge naturally from the experts’ domain models. However, there are
many different reasonable groupings possible. For example, at first sight, it seemed obvious to group all the
information related to a crosshead model as a logical component at the top level of the ontology. A closer
look, however, revealed that crossheads matter only in the context of selected sling models and are not rel-
evant in the overall configuration process. Thus, crosshead parameters could be grouped under the sling
component.

Such ontology design issues can cause many revisions of the domain ontology’s main structure. Some of
these revisions may be dependent on the developers’ individual style and preferences. For example, whereas
one domain expert might prefer to reproduce the part-of hierarchy of an elevator system, another developer
might think it more natural to have a simple flat list of state variables. These decisions may not influence the
performance of a run-time system, but they certainly will affect the knowledge-acquisition and knowledge-
maintenance phases. Thus, representation decisions have to balance several factors: the expected reuse of
an ontology and its instances, the efficiency of the representation for a given method, and the adequacy of
the ontology’s structure for knowledge acquisition. Whereas a part-of hierarchy appears to be useful for re-
use (in contrast to a long list of cryptic state variables), a backtracking problem-solving method might not
make any use of such “representational sugar” at run time.

In Figure 5, we show our application ontology for the Sisyphus-2 problem. Since this is an application on-
tology, it includes concepts that could be reused from a domain ontology, such as the classes ELVIS-Com-
ponents  and ELVIS-Models , as well as concepts that are inherited from information in the method
ontology (see Figure 3), such as the classes ELVIS-Constraints  and ELVIS-Fixes . As we show in
Section 4.4, this application ontology is also the basis of the knowledge-acquisition tool. Therefore, to con-
struct this ontology, we tried to follow, as closely as possible, the organization of the domain knowledge
presented in the Sisyphus-2 document. This strategy should lead to a knowledge-acquisition tool that is nat-
ural and easy to use for domain experts.

Every subclass of ELVIS-Components  is a logical system that groups and provides access to the parame-
ters that are relevant in that context. For example, building dimensions are grouped under the hoistway sys-
tem if they appeared in the hoistway drawing in the Sisyphus-2 document. These logical systems may also
include a list of relevant physical components. For example, the set of available car-guiderail models is ac-
cessed under the CarSystem  class. Information about each instance of a car-guiderail model is stored under
the class CarGuiderails ; however, for knowledge acquisition, this information is accessible only via the
CarSystem  class.

4.3 Definition of Ontologies: MAÎTRE  at Work
The MAÎTRE tool supports the definition and maintenance of ontologies and helps the developer to enter
and edit ontology objects consistently. Features such as context-sensitive pop-up menus allow the user to
define complex information with a minimum of typing, and without overwhelming the user with the syntax
details of the MODEL representation language. Figure 6 illustrates the MAÎTRE editor with the ELVIS ap-
plication ontology. Although building this type of graphical editor is not novel research by itself, MAÎTRE
is an essential part of the PROTÉGÉ-II tool set. Because our methodology includes a number of different
types of ontologies, and expects developers to revise these ontologies iteratively, we must have a tool that
provides a consistent and simple interface for inspecting and editing ontologies. 
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Additional MAÎTRE features, such as incremental loading of partial ontologies, allow experimentation with
different versions of a single ontology. For example, we are currently experimenting with integrating parts
of the Ontolingua design ontology into our ELVIS representation. The design ontology defines a terminolo-
gy suitable for any configuration design; for example, we have designed the classes ELVIS-Constraints
and ELVIS-Parameter  to be subclasses of the more general terms “Constraint” and “Parameter,” as de-
fined in the Ontolingua design ontology. This integration is accomplished with the help of layered ontolo-
gies, where different abstractions levels are loaded incrementally to produce a composite ontology. In the
future, we hope to integrate more of the general design ontology into the ELVIS application ontology. 

Figure 5: The structure of the application ontology (for simplicity, no slots are shown). Every member of
ELVIS-Components includes a list of ELVIS-Constraints and a list of ELVIS-Parameters, as well as
information about the appropriate ELVIS-Models.
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4.4 Design of the Knowledge-Acquisition Interface: DASH at Work
A crucial part of PROTÉGÉ-II’s development cycle is the design of a suitable knowledge-acquisition tool
(also called a domain-specific editor) that allows the acquisition of all the required domain knowledge in-
stances. As outlined in previous sections, the structure of the domain knowledge is already given by the do-
main ontology, but the construction of a useful tool to enter the specific domain knowledge instances
depends on information about the form of individual knowledge pieces. This interface design knowledge
contains some (potentially) domain- and application-independent knowledge that may be reused across dif-
ferent domains and applications. However, many design choices have to be made based on the specific do-
main knowledge to be acquired and will depend on layouting and interfacing options and demands of the
particular application and even of the specific implementation. For example, the usable size of the screen
will affect design choices: Information that might be grouped together may need to be split up for use on a
smaller screen.

The design of a knowledge-acquisition tool is in itself a complex design process, most often constrained by
available tools and hardware options. To achieve reusability across different domains and portability across
different computing environments, PROTÉGÉ-II uses a generative approach, where the knowledge-acquisi-
tion tool may always be regenerated from a given application ontology. The DASH subsystem (Eriksson, &
Musen, 1993) takes the application ontology as a starting point for design and constructs a suitable knowl-

Figure 6: Editing the domain ontology of ELVIS with MAÎTRE. The top panel is used to define class objects
and their relations, the lower-left panel slots, and the lower-right panel facets. Note that the ontology does
not allow the entry of values; they will be entered with the help of the knowledge-acquisition tool generated
from this ontology.
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edge-acquisition tool. The class hierarchy of the ontology along with user-defined slots provides the initial
grouping and layout information for the design of the interface. However, to provide more sophisticated
user-interface support for the acquisition process, we should provide DASH with additional information be-
yond the pure ontology: (1)data type information and (2) the intended dialog structure. The former infor-
mation translates application ontology objects into appropriate graphical interaction objects such as text
fields, number fields, browsers, push-buttons, or pop-up menus. The dialog structure defines interaction pat-
terns: which objects are accessible directly at the top-level of the interface, how objects should be grouped
into windows, and what the sequencing of windows in the knowledge-acquisition tool should be. In the cur-
rent implementation of PROTÉGÉ-II, this type of information is supplied via a set of special-purpose slot
facets that is managed by the MAÎTRE editing environment.9

DASH suggests an initial layout according to its design rules, but the user can the freely modify this initial
design to suit his particular needs and taste.10 The user of a knowledge-acquisition tool is most often the
domain expert. Depending on the complexity of the domain, on the tediousness of knowledge entry, and on
the computer literacy of such a user, domain experts may be supported by other knowledge providers and
by the knowledge engineers. DASH then stores the current design and layout information, along with a da-
tabase of the relevant changes (e.g, coordinates of display widgets, changed labels of buttons), and produces
as its main output a declarative description of the interface. 

4.5 Generation of a Knowledge-Acquisition Tool: MART at Work
Finally, the MART subsystem of PROTÉGÉ-II transforms the declarative interface description into a stand-
alone knowledge-acquisition tool that consists of all the windows and forms as defined by DASH. The com-
plete knowledge-acquisition tool generated by DASH and MART for the Sisyphus-2 problem includes 37
different types of knowledge-entry forms. Figure 7 shows the design of screen forms for three objects in the
application ontology. In the figure, these windows are filled with domain-knowledge instances. The domain
expert should then use this tool to enter all the domain-knowledge instances required for solving all the ap-
plication problems. MART is a run-time system based on the MECANO approach (Puerta, Eriksson, Gennari
& Musen, 1993) that generates knowledge editors on the NeXT platform. 

Although the division into small, separate steps of the process of generating knowledge-acquisition tools
may seem unnecessarily complex, it provides clear boundaries among the different types of knowledge re-
quired to generate a run-time system. For example, the MECANO approach not only includes the domain
ontology, but also allows requires the explicit formulation of an interface model that includes all additional
interface-design knowledge. Furthermore, the transparent separation of these different knowledge types al-
lows PROTÉGÉ-II to achieve platform independence that will be required in real-world knowledge-acquisi-
tion situations. For example, because DASH produces an implementation-independent description of the
knowledge-acquisition interface, we were able to develop another knowledge-acquisition tool on the Mac-
intosh. The tool produced for the Macintosh has the same functionality and the same look and feel as the
tool produced on the NeXTstation, because we used the same generative process beginning with the same
application ontology.

4.6 Summary of Ontology Design for ELVIS

The final design of the application ontology includes all the subsystems (assemblies) of an elevator system.
For all physical components, the ontology contains all the parameters that need to be acquired from the do-
main expert. For example, all sling models have three specific constants that depend only on the selected
model (see Figure 7b). All other relevant information about slings can be provided by the domain expert
through the definition of parameters and constraints. For example, the formula to calculate a sling model’s
weight would be added as an assign constraint. Similarly, range constraints can be added, along with their
potential fixes. 

Note that developers have to make choices about what knowledge to acquire with the knowledge-acquisition
tool and what knowledge to store in the application ontology. For example, in Figure 7(a), the domain expert
must provide with the knowledge-acquisition tool the list of all parameters associated with slings. Instead,

9 A better solution would be a separate knowledge-acquisition design-editing environment, because this information
does usually not belong into a reusable domain ontology.

10 On the NeXT platform, the user custom-tailors the layout with Interface Builder, a tool for window and display
layout and editing.
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we could have listed these parameters as slots in the application ontology, and have left only the task of add-
ing components and their specifications to the domain expert. At the other extreme, we could have left even
the definition of the static component parameters (such as “Sling.weight.constant.a” in Figure 7b) to the do-
main expert.

The choice of storing knowledge in the ontology versus eliciting that knowledge with a knowledge-acqui-
sition tool should be resolved by the envisioned reuse. Our decisions were based on the assumption that our
ontology would be reused by different companies or in different countries, where different guidelines and
safety and legal constraints might exist, but where the basic physical structure of elevator components is un-
changed. In another scenario, such as internal reuse within the same company, all the parameters, con-
straints, and fixes might be reused; thus, their inclusion in the ontology would be preferred.

We realize that quantitative information about knowledge types—be it rules, constraints, or knowledge-base
entries—is not always meaningful because representational changes may influence these figures. Neverthe-
less, we would like to give some feeling for the size and complexity of the final application ontology. The
following list provides an overview of some important characteristics: 

• 14 physical and logical systems, with 16 models and component types, are defined.
• 20 input parameters are provided by the user at run time and are never changed during the system’s

execution (fixed run-time input parameters).

Figure 7: Three forms of the knowledge-acquisition tool generated by DASH. (a) An editor to define multiple
instances of sling models and associated variables. (b) A form to enter data specific to a particular sling
model. (c) An interface to define a range constraint.

(c)

(a)
(b)
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• 6 input parameters are also provided at the beginning of a problem-solving episode, but are mod-
ifiable through fixes (modifiable run-time input parameters).

• 7 default parameters have specific values at the beginning of a configuration problem.
• 50 constraints specify conditions to be satisfied for major parameters. If upper and lower boundary

constraints are counted separately, there are 64 constraints.
• 58 fixes are provided. 41 are unique; some fixes can be applied to several violations. 10 fixes are

unique upgrade fixes, 14 are unique assign fixes, and 17 are step fixes. The fixes directly affect 31
major parameters (which in turn affect many other parameters). There are at most five different fix-
es for a single constraint violation; more typically there are only one or two fixes per violation.

• Over 150 formulae specify how to compute values for major parameters.
Our attempt to organize this complex web of knowledge provided for solving the elevator-configuration task
is based on the construction of a reusable domain ontology. The domain ontology developed for ELVIS is
based on the information provided in the Sisyphus-2 document (Yost, 1992). Although the Ontolingua on-
tology proposed for Sisyphus-2 did not meet all the requirements for ontology construction in PROTÉGÉ-II,
we tried to stay as compatible as possible to the ideas in the ontolingua ontology. Thus, the domain ontology
was based on the physical and logical components of an elevator system. This domain ontology includes the
knowledge that describes the more static parts of the domain knowledge (discussed in Section 4.2.1 and
Section 4.2.2). Procedural domain knowledge is added to the domain ontology through the definition of con-
straint knowledge (Section 4.2.2). These constraints can define additional internal parameters and can be
used to derive values for parameters. The knowledge included so far constitutes the domain ontology. Such
a domain ontology is a good candidate for later reuse in other tasks that use different problem-solving meth-
ods. The augmentation of the domain ontology with the abstract definitions for signaling violations and for
applying fixes (Section 4.2.3) produces the application ontology, since this knowledge is added to solve the
configuration task with the propose-and-revise problem-solving method.

5 PROBLEM-SOLVING METHODS
We have modeled the Sisyphus-2 task with the propose-and-revise problem-solving method defined in
PROTÉGÉ-II. This method behaves like the propose-and-revise method of VT (Marcus et al., 1988), and
only a comparison of the respective method ontologies would tell us whether they are identical; unfortunate-
ly, VT did not include an explicit method ontology. Figure 8 shows the main control structure of the pro-
pose-and-revise method: propose an initial design, critique the design, revise the design such that it satisfies
the design constraints, and repeat this process until there are no constraint violations in the design. This
method description is close to the generic task description for routine design (Chandrasekaran, 1990). Al-
though the method is described at a similar level of abstraction, the different terminologies used in generic
tasks, in VT, and in PROTÉGÉ-II make it difficult to assess commonalities and differences of the respective
methods. We have already described our method ontology for the propose-and-revise method in Section 2.2,
Figure 3. In Sections 5.1 through 5.3, we shall discuss the version of the propose-and-revise method that we
use in ELVIS, provide a detailed description of the method’s behavior, and show how we map the propose-
and-revise method to the Sisyphus-2 domain knowledge.

Figure 8: The general structure and control flow of the generic propose-and-revise method. See Figure 8 for
a more detailed account of the method.

1. Propose an initial solution.
2. Check for any constraint violations;

if there are none, succeed.
3. Choose the best fix associated with the violated constraint;

if no fixes are available, backtrack to previous choice point.
4. Revise the solution by applying the selected fix.
5. Go to step 2.
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5.1 Basic Problem-Solving Method
Our implementation of the propose-and-revise method is based on the chronological-backtracking method
(for a detailed history of these methods in PROTÉGÉ-II, see Eriksson et al., 1992). Chronological backtrack-
ing itself can be viewed as state-space search with additional control structure for the generation and tra-
versal of states. Although the authors of VT (Marcus et al., 1988) have chosen to call their method
knowledge-based backtracking, the core method remains the same.

The main ingredients of a backtracking algorithm are the ability to generate new states and, when the algo-
rithm reaches a dead end, the ability to reverse or backtrack to a previous state. The exact nature of the gen-
eration step, as well as of the method for detection of dead ends, is dependent on domain knowledge. To
improve the algorithm from a blind state traversal, we employed heuristic evaluation functions to select the
next state to explore. These functions also are usually domain dependent. For example, we have used a scor-
ing algorithm that provides an evaluation score for each state; the next state to be explored is the state with
the highest score. If that path (the state and its possible successor states from the recursive application of the
method) is unsuccessful, the state with the next highest score will be considered. This control regime is best-
first search. Of course, we could support alternative search strategies, such as depth-first or breadth-first al-
gorithms. In our implementation, a simple modification of the method-control program can achieve these
variations without modifying other pieces of code.

An important consideration for a problem-solving method is the representational requirements of that
method. Chronological backtracking does not impose a strong model onto the data; thus, it is sufficient to
have a way to model states. For ELVIS, a state is a data structure that holds all the design parameters and
their respective values. All knowledge representation requirements of our propose-and-revise method are
specified in the accompanying method ontology (see Figure 3).

5.2 Method Configuration
The generic method can be improved to account for specific circumstances in the domain. For example, the
fix-application algorithm specified in Section 7 of the Yost (1992) document proposes a specific sequence
in which fixes have to be applied. Although that control scheme may be optimal with respect to the acquired
domain knowledge—and especially for the given “desirability values”—we have designed a more general
control structure that we outline next. Improvements of the general propose-and-revise method (as de-
scribed in Figure 8) are a matter of optimizing performance, which is here defined as the time required to
achieve a feasible solution. Since we had to rely on only one set of test data, our optimization steps are sub-
ject to further evaluation.

A first deviation from the proposed fix-application algorithm is that we apply all possible fixes in parallel.
In addition, we do not follow the algorithm supplied in Section 7 of Yost (1992) for applying step fixes. In-
stead of explicitly applying a step fix until the constraint violation is solved, we apply a step fix only once
per state. However, the same step fix may reoccur as a candidate fix in the next revision state if the constraint
is still violated. As can be seen from the program’s fix-application trace in Figure 11 (in Section 5.4), the
application of two fixes in the test case do follow the incremental schema that is proposed in the Sisyphus-2
document. That is, both fixes for dealing with the violation of the constraints associated with counter-
weight.to.platform.rear  and car.supplement.weight , respectively, are applied in sequence.

Our spreadsheet model and the analysis of our first PROTÉGÉ-II prototype allowed us to construct a depen-
dency network that explicitly lists all parameters and their predecessors and successors. The dependencies
can become very complex: for example, the parameter angle.of.contact  depends on four other param-
eters which in turn depend on other parameters, such that any recalculation of angle.of.contact  in-
volves 27 other parameters. This dependency knowledge is used in ELVIS to reduce the amount of
recalculation when updating parameters. In the Excel solution, the updating of parameter values was
achieved as a built-in feature of the spreadsheet and did not require us to make this dependency knowledge
explicit. The dependency knowledge could, however, also be used to maintain the knowledge base or to im-
prove it by finding loops and shortcuts in the calculation model. To speed up recalculation, we derived the
dependency network from an analysis of calculation formulae, constraint rules, and fix knowledge. When-
ever a parameter is changed, this network is inspected and all dependent parameters are recursively flagged
for recalculation.11 Only these parameters need to be recalculated. Although we chose to use a static depen-
dency network, a dynamic construction of such a network could be added as special method code if the do-
main ontology were to change frequently.
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A detailed description of the current version of ELVIS’ problem-solving method is illustrated in Figure 9.
The figure shows the control flow (i.e., the transition of states of parameters and their values) as well as the
main processes performed in subtasks. These processes, like CHECK constraints, specify the knowledge
roles for the domain knowledge. These knowledge roles can be used to guide method selection as well as
they can cause knowledge acquisition activities to elicit the required knowledge. The particular order of the
subparts is somewhat arbitrary and subject to implementation details because of the recursive nature of the
basic algorithm (and because of the way rules are executed in CLIPS). For example, the REVISE process
(i.e., the application of fixes and the recalculation of parameter values) is actually executed as part of the
GOALP subtask, but it could as well be located in the TRANSITION FUNCTION.

5.3 Mapping Relations
Mapping relations relate the knowledge in the application ontology to the knowledge required by the select-
ed method. These relations are responsible for translating the knowledge instances into a representation that
is usable by the configured problem solver. Because this transformation process can vary in complexity,
PROTÉGÉ-II supports a number of different types of mapping relations (for more details, see Gennari et al.,
1993). In particular, for the elevator-configuration task and the propose-and-revise method, we use the fol-
lowing:

11 This bookkeeping mechanism, with the help of a dependency network, allowed us to deal with the problem of not
updating certain parameters (e.g., the parameters car.buffer.blocking.height  and counterweight.bot-
tom.reference  are special cases; see Sections 5.7 and 5.9 of Yost, 1992).

Figure 9: Overview of the configured propose-and-revise method. Arrows denote the flow of states through
the recursive application of the main control procedure (SOLVER). The three subtasks (GOALP, TRIED-
BEFOREP, and TRANSITION FUNCTION) are further split up in conceptual subparts. Dashed rectangles
show modifications to the generic propose-and-revise method (e.g., the use of a dependency network or the
skipping of the expensive state-comparison) or the support of with domain-dependent heuristics (e.g., some
special procedures to deal with multiple fixes).
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• Renaming mappings, where the semantics between method and application classes match, but the
slot names need to be translated

• Filtering mappings, where the method slots are filled by filtering information from application in-
stances

• Class mappings, where method slots are filled from application class definitions, rather than from
instances

For example, a simple renaming mapping is used to transform instances of the application ontology class
ELVIS-parameters  to State-variables  in the method ontology (see Figures 5 and 3). Figure 10
shows an example of a filtering mapping: The assign constraints generated by this relation enforce the rule
that each sling model requires a particular crosshead model. The sling and crosshead model names are pro-
vided by the domain expert with the knowledge-acquisition tool generated from the application ontology by
DASH. Similarly, we used conditional renaming mappings to translate the most types of constraint and fix
knowledge as described in Section 4.2 to the knowledge types required by the method ontology. For exam-
ple, assign fixes (Section 4.2.3) were translated to increase or decrease fixes (see Figure 3) based on the ex-
istence and on the sign of the fixed change parameter.

These mapping relations provide instances required by the method ontology. Once the developer has built
the mappings, and the domain expert has entered information as application-ontology instances, then the
mapping relations are applied by a mapping interpreter, and are given as input to the instantiated method
(see Figure 2). These mappings allow the developer to adapt an application ontology to arbitrary method
ontologies.

The construction of mapping relations can be an expensive process. To make it as easy as possible to build
instances of mapping relations, PROTÉGÉ-II includes a tool for guided input and editing of the mapping re-
lations needed to connect application and method ontologies (see Gennari et al., 1993). We expect that the
method-configuration tool will allow developers to build a wide variety of mapping relations: mappings
from task to submethod, mappings from method to domain (for interpreting the output of the method), and
mappings from the application ontology to method ontology. All these mappings must be created by the de-
velopers during the method-configuration stage, since the type and number of mapping relations depend on
the method ontology, which in turn depends on the knowledge engineer’s selection and configuration of
methods and mechanisms. 

5.4 Run-Time System
The run-time system solves the test case with the data provided in Section 9.1 of Yost (1992). Although
meaningful performance measures can not be assessed based on the single test case that is available, we in-
clude the following numbers as rough indications. The system takes about 20 seconds to load all the sys-
tem’s components (ontologies, domain knowledge instances, method code, and input values) and about 60
seconds to reach a goal state. The summary of fix applications in Figure 11 shows the principal changes
made to the initial values by the propose-and-revise method. As we can see, five fixes were applied in the
first state [gen1], and two step fixes changed two parameters in the next 11 states. In the final state [gen55],
the resulting values of all parameters were equal to the ones supplied as a solution for the test case.

name:

condition:

expression:

variable:

<Model.name> CrossheadRule

(eq ?Sling.model <Model.name> )
<crosshead-model>

?Crosshead.model

For all instances of the Slings  class, generate an instance of the Assign-con-
straints  class with slot values as follows:

Figure 10: A filtering mapping that creates assign constraints. These constraints will establish the
correct crosshead model for each sling model.
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6 DISCUSSION
We have shown that PROTÉGÉ-II solves the Sisyphus-2 task. Since the PROTÉGÉ-II architecture is designed
to facilitate the definition and use of ontologies and to design useful knowledge-acquisition interfaces, we
spent more time on performing a thorough knowledge analysis and on configuring an appropriate knowl-
edge-acquisition tool than on refining the details of the problem-solving method. We defined a reusable do-
main ontology for the elevator-configuration task that provides a basis for building a knowledge-acquisition
tool. We modified the domain ontology, creating an application ontology, to accommodate the requirements
of the selected problem-solving method, propose-and-revise. PROTÉGÉ-II then generated a domain-specific
knowledge-acquisition tool based on the application ontology. We built mapping relations that transformed
the domain knowledge instances provided by the domain expert into instances that could be understood by
the propose-and-revise method. Finally, using the CLIPS inference engine, we tested the run-time system
with the test case provided in Section 9.1 of Yost (1992).

The importance of working with a running system and real-world domain knowledge cannot be understated.
At several points during our development of ELVIS, we encountered problems that we could not have pre-
dicted had we been working from a theoretical perspective. For example, we could not have anticipated the
need for a special upgrade fix and the complexities such a fix introduces in the application ontology, in the
method and in the mapping relations. In fact, working with the Sisyphus-2 task forced us to re-evaluate cer-
tain aspects of the general-purpose PROTÉGÉ-II architecture. In particular, we are more acutely aware of
the problem of overhead costs for reuse. That is, before developers can reuse problem-solving methods and
domain ontologies, a number of task-specific adaptations may be necessary. In the case of Sisyphus-2, these
costs include time spent on method modifications such as a dependency network, and the work needed to
adapt the domain ontology to create the application ontology. If these adaptations are particularly time con-
suming, then there is less benefit from reuse. Our future work with PROTÉGÉ-II will be aimed at reducing
these overhead costs.

One drawback of the Sisyphus-2 task is that there was only one source of real-world domain knowledge.
Several times during our development efforts, we wondered to what extent the knowledge as presented in
the Sisyphus-2 document influenced our knowledge analysis and system building. We profited from the im-
mense amount of knowledge acquisition, knowledge structuring, and verification that must have gone into
the production of the Sisyphus-2 document; we used this document not only as the starting point for our
knowledge analysis, but also as our reference for domain expertise. However, we are aware of the dangers
of this situation. Even if the knowledge described in the Sisyphus-2 document is correct and complete (i.e.,
if it covers all the possible scenarios and produces feasible solutions), we have no evaluation procedure for
the usability of our knowledge-acquisition tools and the usefulness of our performance system. Such an
evaluation would require more test cases and a set of evaluation scenarios that include detailed feedback

; [gen1] Apply increase fix: opening.to.hoistway.left from 32 to 33
; [gen1] Apply change fix: machine.model := machine28
; [gen1] Apply change fix: hoist.cable.model := hoistcable4_5
; [gen1] Apply change fix: machine.beam.model := s10x35_0
; [gen1] Apply change fix: car.guiderail.model := carguiderail_2
; [gen10] Apply change fix: hoist.cable.model := hoistcable4_625
; [gen16] Apply decrease fix: counterweight.to.platform.rear from 5.25 to 4.75
; [gen20] Apply decrease fix: counterweight.to.platform.rear from 4.75 to 4.25
; [gen24] Apply decrease fix: counterweight.to.platform.rear from 4.25 to 3.75
; [gen28] Apply decrease fix: counterweight.to.platform.rear from 3.75 to 3.25
; [gen32] Apply decrease fix: counterweight.to.platform.rear from 3.25 to 2.75
; [gen36] Apply decrease fix: counterweight.to.platform.rear from 2.75 to 2.25
; [gen40] Apply increase fix: car.supplement.weight from 0 to 100
; [gen43] Apply increase fix: car.supplement.weight from 100 to 200
; [gen46] Apply increase fix: car.supplement.weight from 200 to 300
; [gen49] Apply increase fix: car.supplement.weight from 300 to 400
; [gen52] Apply increase fix: car.supplement.weight from 400 to 500
; [gen55] Goal state reached.

Figure 11: Trace extract: application of fixes for the test case.
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from domain experts and other system users. Only empirical evidence—collected from the use of ELVIS in
everyday, real-world situations—can answer the question of whether this system is of practical use in the
given scenarios.

 The crucial question for Sisyphus-2 is, of course, to what extent our approach produces reusable and shar-
able knowledge. Again, only concrete reuse scenarios, such as exchanging knowledge bases and ontologies
with other developers, can provide answers to this important question. Even given a real example of reuse,
we must have a way of measuring the effort required to develop a system that solves the Sisyphus-2 problem.
Such a measurement could lead to a quantitative metric of the benefit gained from reuse.

As we have seen in Section 4.1, the definition of what counts as a solution is not straightforward. If we chose
a rigid criterion, we would claim that the spreadsheet solution fails to solve the Sisyphus-2 task because it
requires user intervention. Likewise, although our production version of ELVIS solves the task correctly, the
domain-knowledge base was not constructed exclusively with PROTÉGÉ-II tools (i.e., the instances were
translated from the computer files and not by using the knowledge-acquisition tools generated by DASH
from the application ontology). However, both solutions provide important improvements over a plain con-
straint-satisfaction method or over existing, method-based systems. An efficient constraint-satisfaction
method may be able to reach a solution state quickly, but may lack an adequate knowledge-acquisition fa-
cility to define, maintain, and edit all the domain knowledge. A domain-specific knowledge-acquisition tool
is a critical part of any solution: If the system is not easily accepted by the user community of domain ex-
perts, then it will not be used.

Our expectation is that the domain-specific tools produced with the PROTÉGÉ-II architecture are suitable
and easy to use for domain experts. For example, we believe that our tools are more usable than are those
of SALT, the knowledge-acquisition system developed for the original VT task that maps the domain knowl-
edge into an OPS5 production system. To verify this claim, we would need objective measurements of the
amount of time spent with different systems. The effort required to develop VT with the SALT knowledge-
acquisition tool (Marcus & McDermott, 1989) are estimated to be somewhere near 46 person-hours (al-
though it is unknown how familiar the domain expert was with the SALT system). A similar attempt based
on the Soar architecture is reported to have required only 35 hours (Yost, 1993; this Soar-based solution
started from knowledge that was almost identical to that of Sisyphus-2). However, this figure is valid only
for an expert in the TAQL representation language used by the Soar solution.

Only about 22 hours were spent on an Excel implementation that modeled the configuration system. This
figure does not include the amount of time spent rewriting the document, a crucial precondition to the suc-
cess of the spreadsheet solution. In addition, the Excel solution is incomplete: it includes the calculation of
constraint violations and the proposal of fixes, but the automatic selection and subsequent application of fix-
es seem to be beyond the easily implementable functionalities in a spreadsheet model. This effort seems to
be about in the same range as the 19.5 hours spent to complete the part of the TAQL system that is compa-
rable to our Excel solution (Yost, personal communication).

For PROTÉGÉ-II, we cannot evaluate accurately our development effort based on a fully implemented sys-
tem, since (a) the PROTÉGÉ-II tools are under development and were modified during the construction of
the ELVIS system, (b) we did not actually enter all the knowledge into the knowledge-acquisition tool be-
cause we lacked a robust instance save and load mechanisms that would have allowed us to modify ontolo-
gies and mappings after entering all the domain knowledge, (c) the mapping tool did not provide interactive
support to generate all the necessary rules and facts for the knowledge base, and (d) some efforts involved
group development and others were performed by individual members. The following figures are thus pro-
vided only as rough indications of major development steps—we hope that these figures will encourage oth-
er developers to report their efforts and that we can start to define suitable measuring methods. We spent
about 20 person-hours for understanding the domain and for drafting and modifying the ELVIS application
ontology. The addition of the propose-and-revise method to PROTÉGÉ-II’s method library required 19 hours
of CLIPS programming (this figure includes the time spent for method configuration, i.e., for optimizing the
method’s performance to the task at hand). The adaptation of the domain knowledge base (provided as a
computer file in Ontolingua format) took 69 hours. This figure includes manual and macro-supported edit-
ing of the domain knowledge, transformation into a representation that conforms to the requirements of
PROTÉGÉ-II and CLIPS, addition of fix knowledge, as well as debugging, testing and optimizing. These
69 hours represent the effort needed to hand-code the domain knowledge without support from either the
PROTÉGÉ-II  tools nor from taking full advantage of the reusable Ontolingua representation.
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This last step of entering the domain knowledge instances would be shortened considerably with appropriate
translators from Ontolingua into MODEL. However, an automated translation would have to rely on the ad-
equacy of the original representation and any addition (e.g., of fix knowledge) would require additional ef-
forts to ensure consistency and correctness. Furthermore, the Ontolingua representation was based on
idiosyncratic variable names and did not always follow the written problem specification. Thus, additional
effort had to be put into the mapping from Ontolingua back to the plain text and several interpretational am-
biguities had to be resolved. However, we believe that—with the full functionality of PROTÉGÉ-II in
place—a domain expert without experience in programming would spend less time building the application
ontology and entering the domain knowledge with the help of the DASH-generated knowledge-acquisition
tool than would be required to learn and understand the representational format of either Ontolingua or
TAQL. In addition to the time spent by the domain experts, we have also to include the effort required by
system developers for proposing a domain ontology, selecting and configuring an appropriate method and
constructing the mapping relations. Future research has to show that the use of the PROTÉGÉ-II tools actu-
ally shortens the overall system development time compared to the effort needed to build a system from
scratch (e.g., an improved version of the spreadsheet solution).

Of course, we need objective, controlled experiments to measure precisely the effort expended on a partic-
ular task. In the absence of quantitative measurements, approximate indications of effort are essential; such
estimates are currently the only way to assess the usability of the PROTÉGÉ-II architecture. A main objective
of future research and tool development is the study of evaluation procedures and the inclusion of measuring
tools in the PROTÉGÉ-II architecture. However, only work with real problems and with real domain experts
allows us to discover the strengths and weaknesses of PROTÉGÉ-II. Our experience with elevator configu-
ration—a task completely unfamiliar to our developers—has validated the appropriateness of the
PROTÉGÉ-II suite of tools. Although the Sisyphus-2 problem has certain shortcomings, we believe that this
task has allowed us to evaluate our architecture with a substantial real-world problem.
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Appendix: Sample Trace
The following text is the output of the production version of ELVIS that we have edited slightly to improve
its readability. Repeated text that contains only variations of previously shown information (i.e., new states
with different instantiation of constraints and fixes) is shown as points of ellipsis […]. Some trace informa-
tion and CLIPS-specific loading and display information were deleted to shorten the output. The original
sequence of the run-time system is maintained, but is broken up into several sections.

Loading ontologies and code

CLIPS> (load clipsfixes.clp) ; CLIPS enhancements
CLIPS> (load method-ont.clp) ; Generic Method
CLIPS> (load method-config.clp) ; Configured Method 
CLIPS> (load elvis-system.clp) ; Application domain & instances
CLIPS> (load elvis-dependencies.clp) ; Dependency network
CLIPS> (load elvis-input.clp) ; Runtime input 

Reading the input values of the test case

CLIPS> ; (elvis) ; Start run-time system with [gen0]
; [Reading input values]
; [gen0] Signal violation platform_to_hoistway_left-low
; [gen0] Signal violation hoist_cable_safety_factor-low
; [gen0] Signal violation traction_ratio-high
; [gen0] Signal violation vertical_rail_force-high
; [gen0] Signal violation machine_beam_section_modulus-low
; [gen0] Signal violation machine_groove_pressure-high
; [gen0] Signal violation motor_model-incompatible
;; [gen0] SCORE-FIX-A Best score for viol traction_ratio-high is 3
;; [gen0] SCORE-FIX-A Best score for viol hoist_cable_safety_factor-low is 4
;; [gen0] SCORE-FIX-A Best score for viol platform_to_hoistway_left-low is 6

Applying the method

> SOLVER ([gen0])
> GOALP [gen0]
> TRIED-BEFOREP [Skipping comparison of states.]
> TRANSITIONFUNC [gen0]
>> DUPLICATE: Generate new state [gen1]
; [gen1] Adding a multi-fix for platform_to_hoistway_left-low
;; 6 increase opening.to.hoistway.left 1
; [gen1] Adding a single-fix for motor_model-incompatible
;; 8 change machine.model machine28
; [gen1] Adding a single-fix for machine_groove_pressure-high
;; 4 change hoist.cable.model hoistcable4_5
; [gen1] Adding a single-fix for machine_beam_section_modulus-low
;; 4 change machine.beam.model s10x35_0
; [gen1] Adding a single-fix for vertical_rail_force-high
;; 4 change car.guiderail.model carguiderail_2

Generating new states

>> DUPLICATE: Generate new state [gen2]
; [gen2] Adding a multi-fix for platform_to_hoistway_left-low
;; 8 decrease car.return.left 1
; [gen2] Adding a single-fix for motor_model-incompatible
;; 8 change machine.model machine28
; [gen2] Adding a single-fix for machine_groove_pressure-high
;; 4 change hoist.cable.model hoistcable4_5
; [gen2] Adding a single-fix for machine_beam_section_modulus-low
;; 4 change machine.beam.model s10x35_0
; [gen2] Adding a single-fix for vertical_rail_force-high
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;; 4 change car.guiderail.model carguiderail_2

>> DUPLICATE: Generate new state [gen3]
[ …]
>> DUPLICATE: Generate new state [gen4]
[ …]
>> DUPLICATE: Generate new state [gen5]
[ …]
>> DUPLICATE: Generate new state [gen6]
[ …]
>> DUPLICATE: Generate new state [gen7]
[ …]
>> DUPLICATE: Generate new state [gen8]
; [gen8] Adding a multi-fix for traction_ratio-high
[ …]
>> DUPLICATE: Generate new state [gen9]
; [gen9] Adding a single-fix for motor_model-incompatible
;; 8 change machine.model machine28
; [gen9] Adding a single-fix for machine_groove_pressure-high
;; 4 change hoist.cable.model hoistcable4_5
; [gen9] Adding a single-fix for machine_beam_section_modulus-low
;; 4 change machine.beam.model s10x35_0
; [gen9] Adding a single-fix for vertical_rail_force-high
;; 4 change car.guiderail.model carguiderail_2

>> SORT-SCORE of states ([gen1] [gen2] [gen3] [gen4] [gen5] [gen6] [gen7] [gen8] 
[gen9])

<< SORT-SCORE of states ([gen1] [gen2] [gen3] [gen4] [gen5] [gen6] [gen7] [gen8] 
[gen9])

< TRANSITIONFUNC ([gen1] [gen2] [gen3] [gen4] [gen5] [gen6] [gen7] [gen8] [gen9])

> SOLVER ([gen1] [gen2] [gen3] [gen4] [gen5] [gen6] [gen7] [gen8] [gen9])

Revising a state

> GOALP [gen1]
; [gen1] Enable recomputation of opening.to.hoistway.left and dependents
; [gen1] Apply increase fix: opening.to.hoistway.left from 32 to 33
; [gen1] Enable recomputation of machine.model and dependents
; [gen1] Apply change fix: machine.model := machine28
; [gen1] Enable recomputation of hoist.cable.model and dependents
; [gen1] Apply change fix: hoist.cable.model := hoistcable4_5
; [gen1] Enable recomputation of machine.beam.model and dependents
; [gen1] Apply change fix: machine.beam.model := s10x35_0
; [gen1] Enable recomputation of car.guiderail.model and dependents
; [gen1] Apply change fix: car.guiderail.model := carguiderail_2
; [gen1] Signal violation hoist_cable_safety_factor-low
; [gen1] Signal violation traction_ratio-high
;; [gen1] SCORE-FIX-A Best score for viol traction_ratio-high is 3
;; [gen1] SCORE-FIX-A Best score for viol hoist_cable_safety_factor-low is 4
;; [gen1] SCORE-FIX-A Best score for viol hoist_cable_safety_factor-low is 4
> TRIED-BEFOREP [Skipping comparison of states.]
> TRANSITIONFUNC [gen1]
>> DUPLICATE: Generate new state [gen10]
; [gen10] Adding a multi-fix for hoist_cable_safety_factor-low
;; 4 change hoist.cable.model hoistcable4_625
>> DUPLICATE: Generate new state [gen11]
; [gen11] Adding a multi-fix for hoist_cable_safety_factor-low
[ …]
< TRANSITIONFUNC ([gen10] [gen11] [gen12] [gen13] [gen14] [gen15])

> SOLVER ([gen10] [gen11] [gen12] [gen13] [gen14] [gen15])
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Generating and checking more states

> GOALP [gen10]
; [gen10] Enable recomputation of hoist.cable.model and dependents
; [gen10] Apply change fix: hoist.cable.model := hoistcable4_625
; [gen10] Signal violation traction_ratio-high
[ …]

> SOLVER ([gen57])
> GOALP [gen57]
; [gen57] Enable recomputation of compensation.cable.model and dependents
; [gen57] Apply change fix: compensation.cable.model := compensationcable1_4chain
; [gen57] Signal violation compensation_cable_unit_weight-high
;; single-fix: 1 change compensation.cable.model compensationcable5_16chain
> TRIED-BEFOREP [Skipping comparison of states.]
> TRANSITIONFUNC [gen57]
>> DUPLICATE: Generate new state [gen58]
; [gen58] Adding a single-fix for compensation_cable_unit_weight-high
;; 1 change compensation.cable.model compensationcable5_16chain
>> SORT-SCORE of states ([gen58])
<< SORT-SCORE of states ([gen58])
< TRANSITIONFUNC ([gen58])

> SOLVER ([gen58])

Showing the solution state

> GOALP [gen58]
; [gen58] Enable recomputation of compensation.cable.model and dependents
; [gen58] Apply change fix: compensation.cable.model := 

compensationcable5_16chain
 [gen58] Goal state reached.

[gen58]

Reporting the output parameters of the solution state

CLIPS> (report-variables t [gen58])

hoistway.bracket.spacing(165)
car.buffer.model(carbuffer_oh1)
car.buffer.blocking.height(18)
car.buffer.footing.channel.height(3.5)
car.guiderail.unit.weight(11)
car.supplement.weight(500)
compensation.cable.model(compensationcable5_16chain)
compensation.cable.quantity(2)
compensation.cable.length(993)
controlcable.controlcablewtperinch(0.167)
crosshead.model(crosshead_w8x18)
counterweight.between.guiderails(28)
counterweight.frame.weight(508.75)
counterweight.frame.thickness(31)
counterweight.plate.depth(7)
counterweight.plate.quantity(91)
counterweight.buffer.model(counterwtbuffer_oh1)
counterweight.buffer.quantity(1)
counterweight.buffer.blocking.height(0)
deflector.sheave.model(ds_25)
door.model(door_2sso_rh)
governor.cable.diameter(0.375)
governor.cable.length(2130)
hoist.cable.model(hoistcable4_625)
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hoist.cable.length(1058.96)
machine.beam.model(s10x35_0)
machine.beam.length(124)
machine.beam.load.front.left(8529.4918670544484)
machine.beam.load.front.right(8529.4918670544484)
machine.beam.load.rear.left(6060.7244190455522)
machine.beam.load.rear.right(6060.7244190455522)
machine.model(machine28)
machine.gear.ratio.symbolic(55:1)
machine.groove.model(msheavegroove_k3269)
motor.model(motor20hp)
motor.generator.model(motgen_46_230v)
platform.model(platform_4b)
safety.model(safety_b1)
safety.beam.between.guiderails(72.25)
sling.model(sling_25b_18)
sling.stile.length(130.94)
sling.underbeam.space(21)
car.cable.hitch.to.counterweight.cable.hitch(51.75)
car.cable.hitch.to.platform.front(38.0)
car.return.left(25)
car.return.right(3)
counterweight.bottom.reference(55.539999999999999)
counterweight.to.hoistway.rear(9.0)
door.space(6.5)
platform.running.clearance(1.25)
platform.to.hoistway.front(7.75)
car.cab.height(96)
car.capacity(3000)
car.intercom(FALSE)
car.lantern(FALSE)
car.phone(TRUE)
car.position.indicator(TRUE)
door.opening.type(side)
door.speed(double)
hoistway.floor.height(165)
hoistway.depth(110)
machine.beam.support.front.to.hoistway(3)
hoistway.width(90)
machine.beam.support.distance(118)
machine.beam.support.type(pocket)
machine.beam.support.bottom.to.machine.room.top(16)
opening.height(84)
door.opening.strike.side(right)
opening.to.hoistway.left(33)
opening.width(42)
opening.count(6)
hoistway.overhead(192)
hoistway.pit.depth(72)
platform.depth(84)
platform.width(70)
car.speed(250)
hoistway.travel(729)
CLIPS> [ …]
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