
Management of Interface Design Knowledge with MOBI-D

Angel R. Puerta and David Maulsby
Knowledge Systems Laboratory

Stanford University
MSOB x215

Stanford, CA 94305-5479 USA
+ 1 415 723 5294

{puerta,maulsby}@camis.stanford.edu - http://camis.stanford.edu/projects/mecano

ABSTRACT
Effective guidelines for interface construction require
developers to apply a user-centered approach in their
designs. Yet, developers lack integrated tools that would
allow them to work with high-level concepts, such as user
tasks, and to relate them to lower level elements, such as
widgets, in their interface designs.

The Model-Based Interface Designer (MOBI-D) is a suite
of tools for the management, visualization, editing, and
interactive refinement of interface-design knowledge at
multiple levels of abstraction. MOBI-D represents
knowledge via declarative interface models that assign
specific knowledge roles to each model component.
Developers work in an integrated environment with
abstract concepts such as user tasks, domain objects,
presentation styles, dialogs, and user types while being
able to relate those concepts to concrete interface elements
such as push buttons. MOBI-D is the first development
environment to integrate the disparate elements of
interface design into structured conceptual units—interface
models—and to define an interface design as an explicit
declarative element of such units.

Keywords
Model-Based Interface Development, Interface Models,
User Interface Development Tools

INTRODUCTION
Designing an interface is a complex task that requires
developers to organize and manage multiple types of
concepts at various levels of abstraction. On one hand,
designers must identify and understand the target user’s
tasks in order to produce an effective user-centered
interface. On another, these designers must deal with
minute details of layout and presentation that many times
have an important impact on the usability of the interface.

Furthermore, designs become even more complicated
when, among others, issues of multiplicity of target user
types, effective sequencing of dialogs, or platform
dependencies come into play.

There is, however, a lack of tools that help designers put
all the pieces of an interface design together. Currently
available tools focus on specific portions of an interface
design. For example, interface builders are excellent to
create layouts and manipulate widgets but do not help in
managing user tasks. Other tools help with high-level
designs, or mock-ups, but have no way of relating those
designs to actual working interface elements.

A potential solution to create the kinds of tools that
interface developers need is to view interface design as
essentially a knowledge engineering activity. From that
point of view, the problem becomes one of defining
appropriate knowledge representations for interfaces and
their designs, and one of building the tools to support the
definition and editing of such representations.

In this paper, we take such a knowledge engineering
approach and present MOBI-D, an interface-development
environment that allows developers to define, organize,
visualize, and edit interface design knowledge.
Furthermore, we introduce the knowledge representation
associated with MOBI-D: Declarative interface models.
We show that interface models can be used to define how
an interface design is created by relating high-level
elements, such as user tasks, to lower level ones, such as
widgets.

RELATED WORK.
The research area concerned with the explicit
representation of interface-design knowledge is known as
model-based interface development. Most efforts until now
in this field have focused on the definition of a single part
of an interface model (e.g., a user-task model), and on
driving automatically the generation of interfaces from
such specifications.

Mecano [2], which is the precursor of MOBI-D, allowed
developers to generate form-based interfaces from explicit

models of an application’s domain. ADEPT [1] drives
interface generation from models of user’s tasks.
HUMANOID [4] emphasized presentation models as a
basis for producing interfaces. Other approaches utilized
Entity-Relationship data models or Petri Nets as dialog
models to produce interfaces.

These approaches are limited in two aspects. First, by
defining only part of the design knowledge of an interface,
they offer developers only partial views into the design of
an interface. As a result, these technologies tend to be
successful in narrowly defined situations. Second, because
of the emphasis in automated interface generation, the
developers using these tools have a very restricted control
over generated interface designs. More importantly,
however, none of these research efforts attempts to define
the key components of an interface model (user tasks,
domain objects, users, presentation styles, and dialogs) as
forming a declarative unit. Consequently, there is no way
for developers to define and visualize relations among, say,
a user task, a domain object, and a dialog element.

THE MECANO PROJECT
To address the limitations stated in the previous section,
we have created The Mecano Project. This project is a
research effort aiming to enable comprehensive and
integrated support for the design and implementation of
interfaces via declarative interface models [2]. The are
three key elements provided by The Mecano Project:

• A modeling language for interface models (MIMIC)

• A set of generic interface models for user interface
development (MIMs)

• A development environment that supports the
conceptual framework of MIMIC and its associated
MIMs (MOBI-D)

THE MIMIC MODELING FRAMEWORK
MIMIC is a language to express interface models [2]. It
takes a componential approach that defines interface
models as sets of components with specific knowledge
roles. There are two key concepts encapsulated by the
MIMIC language:

• An Interface is a collection of interface objects ordered
under specific interface model components. The
following classes of model components are defined:
user-tasks, domain, presentation, dialog, and user
type. There may be more than one instance of each
class of component in any interface. The ordering, or
schema, of interface objects dictated by one instance of
a component may be different from that of another
instance of the same class of component.

• An Interface Design is an expression of the
relationships among the objects of the various
components of an interface. A design is defined by a
design model component in MIMIC.

The implications for interface software tools are that
developers can: (1) construct interfaces by working with
abstract elements such as user tasks, domain objects, and
dialog representations; (2) visualize how the various
objects form a design (e.g., what presentation styles are
assigned to specific domain objects and which user tasks
involve access to those domain objects); and (3) manage
the use of, and experiment with, multiple versions of
interface model components (e.g., two presentation styles
for different screen sizes, or two user task models with
different ordering of tasks).

MIMIC should be distinguished from previous modeling
languages that model only interfaces [3]. The primary
purpose of MIMIC is to define the components of interface
models, to designate the roles of those components within
an interface design, and to express the relationships among
the objects belonging to various components. MIMIC can
thus be seen to be at a metalevel above current interface
modeling languages.

THE MOBI-D ENVIRONMENT
The tools in MOBI-D provide the functionality to manage,
visualize, edit, and refine each of the components of an
interface model as defined by MIMIC. In a typical,
although not fixed, MOBI-D design process developers
follow these steps using the environment’s interactive
tools: (1) define a user-task model; (2) define an
application domain model and relate the objects in the
domain to the defined user tasks; (3) interactively accept,
modify, or discard MOBI-D recommendations for
presentation styles and dialog interaction techniques; (4)
optionally define user type models and adapt interface
elements to each user type.

There is, however, no need to specify completely every
element of an interface. MOBI-D supports the use of
generic interface models, called Mecano Interface Models
(MIMs) that already provide many of the elements that
typical interfaces need. Figure 1 shows a MOBI-D editor
view for user-task model components. The view is split
into three panes. On the top right pane, the developer can
view the generic objects belonging to the MIM. The top
left pane has the hierarchical view of the particular user
task model for the target interface. The bottom pane lists
the properties of the object selected in either of the top
panes. To use a MIM object, developers simply select the
object and drag it to the hierarchical view. Developers can
also define objects on the fly on the hierarchical view and
add them, if appropriate, to the MIM. The properties of
any object can be edited via the properties pane. Other

model components, such as domain and dialog models, are
edited and refined in MOBI-D with tools similar to that in

Figure 1.

Figure 1. User-task model editor in MOBI-D showing the task model for the interface in Figure 3.

Figure 2. The right panel shows the design view for the selected user task with the relations
to all the domain interface model elements affected by that task.

Interactive Design Views
As defined earlier, an interface design is created when the
developer relates the objects in one model component with
those in other components. In MOBI-D this is achieved via
design views. Figure 2 shows a design view for the
interface in Figure 3. A design view shows, for example,
what domain elements take part in a given user task, or,
what widgets provide user access to a domain object. In the
example of Figure 2, a design view allows a developer to
link the task “Set Filtering Criteria” with the domain
objects “Supplies”, “Deadlines” and “Risk”.

Design views allow developers to quickly understand the
impact on the resulting interface of changes to abstract
elements such as user tasks. They also provide an
integrated framework for visualizing all the aspects of an
interface design.

Developer-Driven Interface Generation
Unlike previous model-based systems, we have discarded
the idea of automatically generating the interface from
partial models. Instead, the goal of MOBI-D is to use
interface models to assist developers in making design
decisions. For example, there are several choices for

widgets to specify deadlines in our sample interface design.
MOBI-D may recommend one choice based on data type
characteristics and a knowledge base of interface

guidelines [3], but will allow the developer to modify
interactively the

Figure 3. A prototype window of an interface for the requisition of supplies. A requisitions officer chooses the best
candidates to supply specified items. The officer can rank the suppliers according to three factors, filter the list of
candidates, and submit the order by e-mail or phone. This window is part of a larger, more complex application in the
logistics domain, called an Interactive Logistics Map, whose interface is being designed with MOBI-D Tools.

choice, or even to change the way MOBI-D makes
recommendations for that type of object. In a similar
manner, the environment tools will guide a developer in
deriving dialog models from user task models, and in
assigning presentation styles based on established
guidelines. The result is that the interface in Figure 3 can
be created by formulating a user-task model and a domain
model, and by following MOBI-D recommendations for
presentation styles and interaction techniques.

CONCLUSIONS
The MOBI-D environment allows developers to take
advantage of declarative interface models for interface
development. The environment is the first of its kind to
integrate the multiple elements of an interface design into
a conceptual unit—an interface model.

By working in MOBI-D, developers can complete user-
centered designs in a structured integrated environment.
MOBI-D facilitates interface construction by offering
generic interface models as well as developer-driven
interface generation tools.

The ability of developers to create interfaces via interface
models opens the possibility for many types of decision
support tools that take an interface model as input.
Examples of such tools are guideline-enforcement tools,
usability tools, critiquing tools, and automated help
systems.

Our experience with model-based interface development

indicates great potential for the technology, but also shows
that such potential cannot be realized without effective
tools for interface model definition such as MOBI-D.

ACKNOWLEDGMENTS
This work is supported by the Defense Advanced Research
Projects Agency (DARPA) under contract N66001-96-C-
8525.

REFERENCES
1. Johnson, P., Johnson, H., Knowledge Analysis of

Tasks: Task Analysis and Specification for Human-
computer Systems, in « Engineering the Human-
Computer Interface », A. Downton (Ed.), McGraw
Hill, London, 1991, pp. - .

2. Puerta, A.R., The Mecano Project: Comprehensive and
Integrated Support for Model-Based Interface
Development, in Proc. of the 2nd International
Workshop on Computer-Aided Design of User
Interfaces CADUI'96 (Namur, 5-7 June 1996), Presses
Universitaires de Namur, Namur, 1996, pp. 19-36.
ISBN 2-87037-232-9

3. Puerta, A.R., Eriksson, H., Gennari, J.H., Musen,
M.A., Beyond Data Models for Automated User
Interface Generation, in Proc. of British Conference on
Human-Computer Interaction, HCI'94 (Glasgow, 23-26
August 1994), Cambridge University Press,
Cambridge, 1994, pp. 353-366.

4. Szekely, P., Luo, P., Neches, R, Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design, in [CHI92], pp.
507-514.

