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ABSTRACT

 

PROTÉGÉ is a metalevel program that generates knowledge-acquisition tools that are 

based on the method of skeletal-plan refinement. In this paper, we propose a flexible and 

extensible architecture that allows the problem-solving method to be assembled from 

more basic methods. In this architecture, we emphasize (1) a uniform view of problem 

solving at different levels of granularity, (2) an explicit data model that allows construc-

tion of complex datatypes from predefined datatypes, and (3) the inclusion of domain-

dependent control information within a domain-independent problem-solving method. We 

show how such a model of problem solving can drive the generation of knowledge-acqui-

sition tools.

 

1 INTRODUCTION

 

Skeletal-plan refinement is a problem-solving method originally proposed for designing 

molecular-biology experiments (Friedland and Iwasaki, 1985). In the 1980s, we modified 

and extended the method for planning therapies for clinical trials (Tu et al., 1989). 

Because the method is used to instantiate skeletal plans at multiple time points, we call it 

the method of 

 

episodic skeletal-plan refinement 

 

(ESPR). The method was the basis for a 

series of experiments in building knowledge-acquisition systems. First, we built OPAL, a 

system for acquiring skeletal plans in the domain of cancer chemotherapy (Musen et al, 

1987. Then, our laboratory developed PROTÉGÉ, a metalevel tool for generating knowl-

edge-acquisition systems for clinical-trial management in alternative domains (Musen, 

1989).

Like several other method-based knowledge-acquisition systems built at approximately 

the same time—ROGET for a type of heuristic classification (Bennett, 1985), MOLE for 

the cover-and-differentiate method (Eshelman, 1988), and SALT for the propose-and-

revise method (Marcus and McDermott, 1989)—PROTÉGÉ assumes that there is a fixed 
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method of problem solving that defines the roles that domain knowledge plays in the prob-

lem-solving process. PROTÉGÉ, unlike the other systems, divides the knowledge-acquisi-

tion process into two phases. First, a knowledge engineer maps the terms and relations 

describing the method’s knowledge roles into concepts in the domain. In that process, she 

creates, in domain terms, a model of the knowledge required for solving the task using this 

method. Using this task model, PROTÉGÉ generates a knowledge-acquisition tool spe-

cialized for the task in the domain. Because the terms used in it are meaningful in the 

domain, the knowledge-acquisition tool is intended for use by domain experts (who may 

be unfamiliar with the problem-solving method) to enter the detailed content knowledge. 

An inference engine called e-ONCOCIN interprets the resulting knowledge base to create 

an advice system (Figure 1).

 

(Insert Figure 1 here)

 

As formulated in PROTÉGÉ, the ESPR method uses a collection of time-varying 

 

planning 

entities

 

 to represent the operators that can be applied, 

 

input data

 

 that are gathered from the 

environment, and 

 

task actions

 

 that can modify the instantiation of currently active plan-

ning entities in response to particular input data. In the domain of cancer treatment, for 

example, the planning entities might be chemotherapies and radiation therapies; the input 

data might be results of laboratory tests and physical examinations; and task actions might 

be rules for reducing the medication doses based on observations of drug toxicities. These 

treatment options and rules for dose adjustments are often described in

 

 protocols

 

 that are 

followed by physicians. Thus, in treatment for a patient with cancer, the domain-specific 

knowledge-acquisition tool generated by PROTÉGÉ is a tool for acquiring protocols that 

specify both different types of chemotherapies and radiation therapies and the alternative 

ways of modifying the therapeutic actions in response to input data.

This methodology of using a fixed problem-solving method to define knowledge roles, 

although powerful, has a number of limitations. The method, being embodied in the code 
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of the e-ONCOCIN inference engine, is not easily extensible.When the domain task to be 

solved by the method is described, there may be domain-dependent attributes that do not 

fit into any of the predefined roles of the method. For example, in cancer chemotherapy, 

the administered chemotherapies are counted in terms of cycles. Thus, an oncologist can 

speak of “second cycle of VAM chemotherapy.” Yet the domain-independent ESPR 

method provides no guidance for defining such small-grained domain-dependent con-

cepts. The knowledge engineer has to provide operational semantics for such domain-

dependent terms by writing production rules in the inference engine’s rule language. A 

similar problem arises because there is no easy way, except by writing symbol-level pro-

duction rules, to add data-abstraction behavior to the ESPR method that is presupposed by 

PROTÉGÉ. The source of power of a methodology can be a limitation when the problem 

to be solved does not fit exactly into the framework of the methodology. The separation of 

control knowledge in the problem-solving method and content knowledge in the domain 

allows us to build knowledge-acquisition tools. Nevertheless, there are tasks for which 

some specific types of domain-dependent control knowledge are needed. In cancer treat-

ment, one example of such domain-dependent control knowledge involves the sequencing 

of multiple chemotherapies over time. In PROTÉGÉ and in the knowledge editors gener-

ated by PROTÉGÉ, we showed that it is possible to integrate such information in our 

knowledge-acquisition systems. Yet this possibility was not extended systematically to 

other parts of the problem-solving method, such as the ordering of dose-reduction task 

actions, where knowledge engineers have had to order the underlying production rules 

manually to obtain the right behavior.

Another problem in PROTÉGÉ—although not one that is an intrinsic weakness of the 

methodology—is that PROTÉGÉ’s data model does not permit the user to represent rela-

tionships between past input data and the planning entities that are modeled as temporal 

intervals. Thus, even though the representation language in the e-ONCOCIN problem 

solver allows the knowledge engineer to specify a temporal relationship such as “FIRST 
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white-blood-cell count AFTER LAST chemotherapy,” such a reference cannot be entered 

through the knowledge editor.

These considerations have led us to design a new PROTÉGÉ architecture, called PRO-

TÉGÉ-II, that is configurable and extensible by the users both of PROTÉGÉ and of the 

knowledge editors created by PROTÉGÉ. It allows knowledge engineers to develop 

knowledge editors that are based on problem-solving methods other than ESPR, and to 

enter domain-dependent control knowledge in constrained ways. Furthermore, it has a 

consistent data model and a uniform view of problem solving at different levels of granu-

larity. 

We shall describe our approach to developing a model of problem-solving behavior that 

satisfies these objectives (Section 2). We propose that knowledge engineers may be able to 

configure a model of problem solving from a library of subcomponents that can serve as 

building blocks for custom-tailored problem-solving methods at different levels of granu-

larity. We shall reformulate the ESPR method as a composite method assembled from 

other methods (Section 3). Finally, we shall show how the two-stage knowledge-acquisi-

tion process is applied in the PROTÉGÉ-II architecture (Section 4). In this paper, we 

focus on the reformulation of the ESPR method in the PROTÉGÉ-II architecture. The 

design of PROTÉGÉ-II to implement the architecture, and issues of the related human–

computer interaction, are described elsewhere (Puerta et al., 1992).

 

2 The PROTÉGÉ-II ARCHITECTURE

 

We adopt a framework where problems to be solved

 

 

 

are represented as

 

 tasks

 

, and ways of 

solving them are represented as 

 

methods

 

. A task is a specification of a problem to be 

solved in the world, such as diagnosing problems in a four-cylinder engine or designing a 

waveform generator. A 

 

task class

 

 is a family of tasks whose input and output specifica-

tions can be characterized in similar domain-independent terms. For diagnostic problem 
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solving, the terms may be “symptoms” and “faults.” For a design problem, the terms may 

be those describing the functional specifications of the required output and the available 

input components. In PROTÉGÉ-II, these input and output specifications, together with a 

task index, relations that the inputs and outputs must satisfy, and an optional predicate 

indicating when the task is completed, characterize the task class. No assumption is made 

about the procedure or the knowledge that is required for accomplishing the task. 

Abstracting a task class from tasks applied in different domains is useful when we can 

define problem-solving methods

 

 

 

that construct solutions for tasks in the task class. A prob-

lem-solving method is a partially predefined procedural specification for transforming 

input data objects into output data objects according to transformation rules that have 

meaning at the knowledge level. The input data objects include not only the case data on 

which the problem solver is working, but also domain knowledge that plays definite roles 

in the transformation rules. In the ESPR method that we shall describe (Section 4), the 

inputs include the case data, the skeletal plan that has been selected for the case, and the 

current time of the session. The output of the method is a set of planning-entity instances 

that represent real-world actions executable by the user of the advice system.

A method either is decomposable into a set of subtasks or is a basic method, which we call 

a 

 

mechanism

 

. Each of the subtasks may have one or more methods for its solution (Figure 

2). This recursive decomposition of methods into subtasks gives us a uniform view of the 

problem-solving process at different levels of granularity. Note that the level to which we 

decompose a method is a design decision regarding the appropriate level of abstraction. 

What is considered a mechanism in one context may well be considered a method in 

another. Our guideline is to define mechanisms that are sufficiently specific to solve par-

ticular tasks and yet sufficiently general to be reusable as parts of other problem-solving 

methods.
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A method specification is analogous to a task specification. In addition to input and output 

declarations and semantic-constraint annotations, it has the following components:

1. A global data model that specifies the type of data and knowledge processed by the 

method

2. A collection of subtasks, and relations specifying how the subtasks’ inputs are to be 

bound from the inputs of the method 

3. A control structure for the subtasks, embedded in the code of an interpreter for the 

method, or specified explicitly in the task-control language (for the purpose of this 

paper, the task-control language is simply a partial ordering among the subtasks)

 

(Insert Figure 2 here)

 

A method is partially predefined in the sense that the input and output data objects on 

which the method operates must be specialized into those that have meaning to the domain 

expert, and the methods or mechanisms for solving the method’s subtasks must be selected 

and ordered. Because methods have different knowledge requirements, some methods 

may not be appropriate for configuring the problem solver in a particular domain. On the 

other hand, multiple methods may be appropriate for a single task. It is the knowledge 

engineer’s responsibility to identify the appropriate methods for the tasks on which she is 

working. We call this process of data specialization and method selection and ordering

 

 

method configuration

 

.

PROTÉGÉ-II will have libraries of prebuilt task classes and methods. When appropriate, 

knowledge engineers will configure methods for tasks in particular domains. However, 

the domain task to be solved sometimes will not have an appropriate prebuilt problem-

solving method. In this case, either there is nothing in the libraries that fits the task and the 

knowledge engineer will develop a new task description and its associated methods, or the 

knowledge engineer will 

 

assemble

 

 existing methods into composite methods.
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To assemble composite methods from other methods, we must have a language for speci-

fying terms and relations in a method. This method-specification language must have a 

 

data model

 

 for specifying the knowledge and data processed by the method, a 

 

control 

model

 

 for selecting and sequencing the execution of the subtasks or submethods in the 

problem-solving process, and a language for describing the semantics of the relationships 

among the inputs and outputs of the tasks and of the methods. The data model allows a 

knowledge engineer to declare, as input to the constructed task and method, datatypes that 

are composed from the datatypes associated with the existing tasks and methods. The data 

model also specifies the kinds of query and updates that can be performed on the data. The 

control model allows her to partition the required control information, some of which she 

specifies as she assembles the problem-solving method, while leaving other parts for the 

domain expert to enter.

An analogy to a programming language illustrates the need for these three aspects of the 

problem-solver definition. A programming language provides a set of basic datatypes 

(such as strings and structures) from which application data structures can be declared. 

Similarly, each problem-solving method must presuppose some general model of the data 

it processes. That data model provides the base datatype language with which knowledge 

engineers can define other concepts in the domain. A programming language has control 

structures such as 

 

for

 

 loops and 

 

if–then

 

 statements. At the level of the problem-solving 

process, we must specify the ordering of the invocation of the subtasks and their methods, 

either statically or dynamically. Finally, a programming language has formal and informal 

specifications of the semantics of its operations. We do not expect to be able to develop a 

language for formally specifying the behaviors of the problem solvers. However, with 

each task and method, we shall associate descriptive annotations on the properties of its 

inputs and outputs. With each method, we shall associate similar annotations on its knowl-

edge requirements and expected problem-solving behavior.
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3 COMPONENTS OF THE ESPR METHOD 

 

We shall illustrate the architecture for PROTÉGÉ-II by describing in detail how we have 

reformulated the ESPR method in the new framework. Although the ESPR method was 

built into the original PROTÉGÉ, it can be assembled from those methods and mecha-

nisms in the built-in method library of PROTÉGÉ-II. We shall describe first the global 

data model that is assumed throughout, then the partitioning of the control information 

into the component that is prebuilt into the methods, the component that is configured by 

the knowledge engineer, and the component that requires domain expertise. Finally, we 

shall describe the subtasks and the methods from which the ESPR method can be assem-

bled.

 

3.1  Global Data Model

 

The nature of the cases that an expert system solves depends on the task and on the 

domain. Those cases, and the solutions to those cases, must be represented by a collection 

of data structures. Consequently, a problem-solving method such as episodic skeletal-plan 

refinement must presuppose some general model of the data it processes. That data model 

provides the base datatype language with which knowledge engineers can define other 

concepts in the domain. The global data model is a property of a class of domains and is 

not unique to any particular problem-solving method. We assume that each method pre-

supposes a global data model whose primitives can be specialized—but not augmented—

by the PROTÉGÉ-II user. 

 

Time Model: 

 

A function of the global data model is to define the appropriate temporal 

properties of data. In the domain of medical therapy planning for which PROTÉGÉ was 

originally designed, patient data can be time-invariant (such as the patient’s social security 

number), time-stamped (such as laboratory-test results), or interval-based (such as a treat-

ment intervention that takes place over time). In the model of time for skeletal-plan refine-

ment, we have adopted the time point as the primitive temporal element. We assume that 
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time points have granularities expressed as a calendar/clock time unit. The use of time 

points with granularities implies that we have adopted a model of discrete time points at 

each level of time granularity. We assume that the granularity units are chosen such that a 

time point specified at a finer level can always be converted to a coarse level. For example, 

“12-May-89” can be converted to “May-89.” In this model, intervals are defined as a pair 

of time points, and the semantics of the intervals is defined in terms of the corresponding 

time-point pairs.

There are three special time points: PAST, FUTURE, and NOW. For all time points 

 

t

 

, 

 

t 

 

is 

after PAST and before FUTURE. NOW represents the “current time” (or today’s date, if 

date is the granularity of time) associated with a particular patient case in an interaction 

with the problem solver.

We define precedence relations over time points, granularities, and durations. These prece-

dence relations must take into account granularities of the time stamp. For example, we 

define two types of equalities between time points with different granularities. In one 

equality relation (

 

≈

 

), the two time points are compared at their common granularity (thus, 

“1990 

 

≈

 

 June 1990”); the other equality relation (same_time) requires that time points be 

compared at their finer granularity (thus, “1990 same_time June 1990” is not true). For 

time intervals, we have defined corresponding relations based on the relations on their 

start and stop points.

In a time model for skeletal-plan refinement, assertions are interpreted over time points. 

Thus, it is possible to ask whether something is true at a particular time. If an assertion is 

associated with an interval, then that assertion holds for all time points in the interval.

 

Entities:

 

 In the data model that we are using for our reformulation of ESPR, the primitive 

data elements are entities with attributes. The entities are class objects that may have 

instances; the attributes of the class objects may be either class attributes whose values are 
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common to all instances or instance attributes whose values must be determined for each 

instance. 

We want to be able to define basic relations among the class objects, such as the 

 

kind of

 

 

relation (e.g., a prescription for AZT drug is a 

 

kind of

 

 medication, which is a 

 

kind of

 

 plan-

ning entity), or the 

 

part-of 

 

relation, (e.g., white-blood-cell count is 

 

part-of

 

 hematology lab 

results).

Classes representing concepts in the domain have a temporal specification of static, time-

stamped, or interval. Instances of the two latter classes have corresponding instance 

attributes of either 

 

time-stamp

 

, or 

 

interval

 

, the latter of which is a pair of time points. 

Thus, the planning entity 

 

medication

 

 has instances that have the attributes 

 

start time

 

 and 

 

stop time

 

, which denote the beginning and end of drug-administration episodes.

 

Expressions and Data Manipulations:

 

 In our new architecture, we take a pragmatic 

approach to specifying the global data model associated with a given problem solver. The 

global data model consists of a grammar for datatype declaration, data access, and data 

manipulation, with an interpreter that implements the semantics of that grammar. The 

grammar provides the primitive datatypes, basic terminals and nonterminals, and rules for 

constructing legal expressions for data access, data manipulation, and more complex data-

types. The grammar thus constitutes a modeling language in terms of which the concepts 

and the primitive operations in the domain can be defined. 

For example, the grammar allows expressions such as “FIRST value of white-blood-cell 

count DURING LAST medication INTERVAL,” where the capitalized key words have 

meaning within the grammar for the particular data model, and the lower-case symbols are 

terms that either must be predefined in the method specification (e.g., 

 

value

 

), or must be 

defined by the knowledge engineer for the domain (e.g., 

 

white-blood-cell count 

 

and 

 

medi-

cation

 

). The grammar and its interpreter allow the semantics of the expression to be 



 

13

 

defined in terms of the data model, rather than in terms of ad hoc symbol-level constructs. 

For example, one way in which the interval associated with a planning entity could be rep-

resented would be as an 

 

n

 

-tuple in a relational table that stores the start and stop times and 

the granularities associated with those time measurements; the data model, however, 

shields the knowledge engineer and the domain expert from such symbol-level concerns.

The grammar for the global data model also defines the legal data manipulations. Entities 

that are associated with time intervals may have instances that are manipulated with tem-

poral operators that start a new interval (creating an instance of the entity with a certain 

start time), that stop an interval (setting the stop time to a particular time point, thus clip-

ping the interval), that delete an interval (removing an instance of the entity from the sys-

tem’s active memory), and that alter the attribute of an interval-associated entity (setting 

some attribute of the instance to a particular value).   

 

3.2  Control Model

 

The control model of this architecture relies on a model of agenda-based execution (Firby, 

1989). The run-time model of the problem solver consists of an agenda to which problem-

solving tasks can be posted. The tasks can have priorities and they can be linked by a par-

tial ordering. An agenda interpreter cyclically determines the priorities of the tasks subject 

to the ordering constraints. The methods or mechanisms associated with the selected task 

in turn are selected for execution and linked to the invocation task. Method- or mecha-

nism-specific interpreters execute the methods or mechanisms, and possibly post more 

tasks to the agenda.

As the tasks and methods are executed, they incrementally write their output to a global 

working memory. It is not necessary for the task or method to be completed before other 

methods are triggered by changes in the working memory. Thus, the input and output 

specifications of the tasks and methods are data-flow relationships.
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This agenda-based execution model allows great flexibility in specifying control informa-

tion. The control information can be implicit procedural control hidden in the code of the 

method or mechanism interpreter, or it can be expressed explicitly in a control language 

that orders the subtasks in a method’s subtask decomposition. Alternatively, the triggering 

conditions in methods or mechanisms may cause data-driven execution. In specifying the 

control structure in skeletal-plan refinement, we shall use all three types of control 

schemes.

We have developed languages for specifying both domain-dependent and domain-inde-

pendent control knowledge. One example of domain-dependent control specification is 

the transition diagram shown in Figure 3. It specifies the chemotherapy sequence for a 

particular cancer clinical-trial protocol. In PROTÉGÉ-II, this control information is the 

input knowledge to a planning-entity decomposition mechanism that is invoked when the 

system attempts to instantiate the appropriate chemotherapy at a point in time. Thus, the 

role of the domain-specific control knowledge is defined by the mechanisms that specifi-

cally use that kind of knowledge. Our current domain-independent control language 

allows the specification of a partial ordering among a set of subtasks.

 

(Insert Figure 3 here)

3.3  Subtask and Method Specification

 

We see the ESPR method as being decomposed into three subtasks: proposing plan actions 

based on a high-level plan, identifying problems, and modifying the plan action in light of 

the identified problems. We shall use these three subtasks and their methods to illustrate 

how we specify the tasks, the methods for solving them, and the domain and control 

knowledge that must be acquired to generate both the knowledge-acquisition system and 

the problem solver. We shall assume that these three subtasks and the methods for solving 

them have already been entered into our task and method libraries. Furthermore, we shall 

assume that all the small-grained subtasks, methods, and mechanisms for configuring 
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these methods are in the built-in libraries. In the Section 4, we shall show how the ESPR 

method for the protocol-based execution planning task can be assembled from these sub-

tasks and methods. 

All three subtasks have the case data and a time point as inputs. The plan-proposal

 

 

 

task, in 

addition, takes as an input a planning-entity class. The task then produces a set of plan-

ning-entity instances that have been instantiated from the input planning-entity class and 

from other planning-entity classes that make the given planning entity executable. The 

problem-identification task takes case data and a set of problems to identify as input, and 

generates a set of intervals representing the problems that are detected in the case data. 

The plan-modification task uses problems that have been identified and a set of planning-

entity instances as input, and generates a new set of planning-entity instances.

In protocol-based execution planning, we use three methods—

 

instantiate-and-decompose

 

, 

 

generalize-from-data

 

, and 

 

situation-directed-revision

 

—to solve the plan-proposal, prob-

lem-identification, and plan-modification subtasks, respectively. These three methods use 

knowledge of the planning entities, the problem-abstraction mechanisms, and a set of situ-

ation-based mappings from case data to plan-modification subtasks. These three types of 

knowledge together constitute our model of a protocol. 

The 

 

instantiate-and-decompose

 

 method for proposing an execution plan has as its inputs 

case data, a time point, and a top-level planning entity. Its subtasks are to instantiate the 

given top-level planning entity and to use one of the decomposition mechanisms to find 

those component parts of the planning entity that must be instantiated recursively at the 

given time point.

The 

 

generalize-from-data

 

 method for identifying problems uses case data and a control 

structure for identifying the problems from the given case data. In PROTÉGÉ’s library of 

methods, we shall have a set of problem-detection and abstraction mechanisms.

 

1
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The 

 

situation-directed-revision

 

 method uses case data and the problems identified in the 

problem-identification subtask to modify the planning entities proposed in the 

 

instantiate-

and-decompose

 

 phase. Associated with the method is a parameterized plan-modification 

subtask, where the parameter is one or more of the domain-dependent problems (such as 

renal toxicity or opportunistic infection) that are specified by the knowledge engineer or 

the domain expert. The control structure of this method binds problems identified in the 

problem-identification phase to the parameterized plan-modification subtask. For each 

possible combination of problems, the domain expert needs to specify the appropriate 

plan-modification procedure, either using the primitive data-manipulation operations in 

the data model or specifying another plan-proposal subtask.

 

4 KNOWLEDGE ACQUISTION FOR THE ESPR METHOD 

 

The use of a global data model, a control model, and libraries of domain-independent 

tasks and methods as the basis for expert-system development has implications for build-

ing a knowledge-acquisition system. 

The knowledge-acquisition system must have facilities that allow the entry of the data 

query and manipulation expression allowed in the grammar of the global data model. This 

facility is needed everywhere that the specification of an expression is required and, thus, 

must be implemented as an editor that can be embedded in other editors. 

Moreover, the knowledge engineer will be defining the domain concepts used in the meth-

ods by 

 

subclassing

 

 the input and output classes of tasks and methods or by 

 

composing

 

 

existing classes into composite classes. Subclassing an entity class involves specifying 

values in some class attributes and defining additional domain-specific attributes. The 

 

1  

 

See (Shahar, 1992) for definitions of the temporal-abstraction mechanisms and the requirements for 

instantiating these mechanisms.
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PROTÉGÉ-II system uses the input and output class declarations of the prebuilt tasks and 

methods, and generates forms that allow the knowledge engineer to define specializations 

of those classes. These domain-specific subclasses defined by the knowledge engineer in 

turn determine the forms in the knowledge editor that PROTÉGÉ-II creates for the domain 

experts.

Composing a class means declaring a new class and specifying that the attributes of that 

class take existing class objects (or their subclasses) as values. In the example to be dis-

cussed, we shall declare a 

 

protocol

 

 as a composite class whose attributes are planning enti-

ties, problems, and plan-modification actions. The problem-solving methods that act on 

composite classes, such as the 

 

protocol

 

, access the attributes of the composite classes 

through predefined class access functions provided by the data model. 

The control model in PROTÉGÉ-II includes languages for specifying both domain-inde-

pendent ordering of subtasks and domain-dependent flow of control. Both languages must 

have associated editors through which the control information can be entered. As the 

domain-dependent control-flow editor will be used by application specialists, the possible 

datatypes used by the editor must be couched in domain terms (e.g., sequencing of 

 

medi-

cations

 

 to administer). Thus, the control-flow editor must be instantiated for a particular 

domain.

Finally, the knowledge-acquisition system must have the facility to allow a knowledge 

engineer to associate methods from the method library of PROTÉGÉ-II with the tasks and 

subtasks selected for the problem-solver. The knowledge-acquisition system must index 

the methods and tasks to help the knowledge engineer select appropriate methods for the 

tasks (Puerta et al., 1992). 

Using these facilities provided by PROTÉGÉ-II, the knowledge engineer first assembles 

and configures the problem-solving method for the task (Section 4.1). The input and out-
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put specifications of these configured methods define the knowledge roles for which 

domain-specific datatypes must be defined (Section 4.2). Using the configured methods 

and mechanisms and the domain-specific knowledge roles defined by the knowledge engi-

neer, PROTÉGÉ-II generates a knowledge editor that can be used by application specialist 

to enter the necessary domain knowledge (Section 4.3).

 

4.1 Assembling the ESPR Method

 

To assemble the ESPR method, the knowledge engineer must make a number of design 

decisions. As we have seen, there are numerous data-flow relationships among the sub-

tasks. These data-flow relationships only partially constrain the possible control flow. For 

example, it is possible that, before the propose-plan subtask has completed execution, the 

problem-identification subtask can be invoked with some problems to check. The knowl-

edge engineer can fix the order of the invocation of the subtasks by placing a partial order-

ing on the subtasks. In Figure 4, we force the plan-modification subtask to execute only 

after the initial plan-proposal subtask has completed, but we place no such constraints 

between the plan-proposal and problem-identification subtasks.

 

2

 

 

The output specifications of the configured method can be derived easily from the outputs 

of the method’s constituent subtasks. The knowledge engineer should select a subset from 

the union of the outputs of the constituent subtasks. In the ESPR method that we are con-

figuring, we may choose the problems the system has identified, as well as the planning-

entity instances, as the outputs of the method. 

 

(Insert Figure 4 here)

 

2  

 

A more general architecture will have metalevel control methods (strategies) that determine the order of 

the execution of the subtasks dynamically. 
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The inputs to the top-level constructed method are more difficult to define. It is not suffi-

cient to take the union of the inputs of the constituent subtasks. Recall that the input data 

objects of a method include not only the case data, but also the knowledge used in solving 

the problem. For PROTÉGÉ-II to generate a knowledge editor for a clinical-trial manage-

ment task, it must have a coherent model of the protocol in the domain. Thus, the inputs to 

the ESPR method that we are constructing cannot be specified completely until the knowl-

edge requirements for methods that solve the subtasks are known. It is from these knowl-

edge requirements that we construct a model of the protocol and any other domain 

knowledge required for solving the protocol-based execution-planning task.

To develop a model of the protocol, we must abstract the knowledge used in all the meth-

ods and mechanisms that may be used to solve the subtasks in the task decomposition of 

the assembled ESPR method. The knowledge engineer must use the class-composition 

capability of our data model to declare a protocol as a class object that contains (1) a set of 

planning entities and their associated decomposition mechanisms, (2) a set of problems 

and their associated problem-identification mechanisms, and (3) a set of plan-modification 

mechanisms. 

 

4.2 Defining the Domain Task Model

 

Once the overall problem-solving method has been selected or assembled, knowledge 

acquisition is driven by the requirements of operationalizing the method in a particular 

domain. The inputs of the methods must be specialized to terms meaningful in the domain. 

For illustration purposes, we shall use clinical trials of drugs for treating HIV-positive 

patients as the application domain.

Given the input requirements of the ESPR method assembled in Section 4.1, PROTÉGÉ-

II will ask the knowledge engineer to define a set of case-data objects representing con-

cepts in the domain (such as white-blood-cell counts or bilirubin), a 

 

part-of

 

 hierarchy of 

planning-entity classes, a set of possible problem abstractions, and a set of revision mech-
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anisms that map problems and data to plan-modification actions. For each subclass that 

the PROTÉGÉ-II developer defines, she should define the class and instance attributes 

associated with that subclass. For each attribute, the system needs to know the legal val-

ues, as well as the time when the values are determined (knowledge-editor time or run 

time). We shall briefly illustrate some of the planning entities and problem abstractions 

that a knowledge engineer may specify for the HIV domain.

Figure 5 shows one planning-entity part-of hierarchy for the HIV domain. This specifica-

tion of planning entities indicates that protocols in this domain have three levels of 

abstractions for therapeutic actions: (1) protocol administration as a whole, (2) regimens 

for alternative types of treatment, and (3) medications making up a regimen. This structure 

will determine the types of domain knowledge that the PROTÉGÉ-II-generated knowl-

edge editor will request from the domain expert.

 

(Insert Figure 5 here)

 

For each class in the planning-entity composition hierarchy, the PROTÉGÉ-II knowledge 

engineer indicates what subtasks for finding instance-attribute values should be set up in 

the instantiation process. The semantics of these attributes will be defined by the mecha-

nisms that the knowledge engineer associates with these subtasks. We have identified a 

small number of mechanisms for specifying relationships among attributes of planning 

entities. One such mechanism allows specification of definitional relationships among 

attributes of entities. For example, the current cumulative dose of the drug can be defined 

as the sum of a previous cumulative dose and the product of the current dose and fre-

quency. Other relationships among attributes will be defined by the domain specialists 

using the mechanisms made available from the method library.

Figure 6 shows part of a problem hierarchy that can be defined for the HIV domain.

 

3

 

 The 

problem list defined by the PROTÉGÉ developer forms the menu of problem classes that 
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the knowledge-editor user can use to define protocol-specific problems for which therapy 

actions may be altered. 

 

(Insert Figure 6 here)

4.3 Knowledge Acquisition Via Knowledge Editors Generated by PROTÉGÉ-II

 

Given planning-entity and problem class hierarchies such as those shown in the previous 

section, PROTÉGÉ-II generates a knowledge editor custom-tailored for the domain. 

Instead of using generic terms such as

 

planning entity

 

, the knowledge editor uses domain-

specific terms such as 

 

medication

 

.

For each domain-specific planning-entity class, the user of the knowledge editor defines 

subclasses that are used in that protocol. The knowledge editor has forms through which 

the attribute values of these planning entities can be specified. For planning entities that 

have part-of children, the user is required to specify the decomposition method by select-

ing from the library of mechanisms the appropriate decomposition mechanism, and to 

specify the necessary data for that mechanism.

Figure 7 shows how the planning entities of a protocol (protocol CCTG-522) can be 

defined as subclasses of the planning entities defined at the PROTÉGÉ level. A decompo-

sition mechanism associated with a planning entity may instantiate some of the planning 

entities at lower level, or a plan-modification mechanism may cause a planning entity to 

be instantiated. Each of the mechanisms has its own editor. For example, if the domain 

expert wants to specify a sequence of treatment actions similar to the one in Figure 3, the 

 

3  

 

The problems shown in Figure 6 are abstractions about patient 

 

states

 

. We have also developed mechanisms 

for making 

 

gradient

 

 and 

 

rate

 

 abstractions that characterize direction and rate of change of parameter data 

(Shahar et al. 1992).
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knowledge editor brings up the graphical editor for specifying such a procedure (Puerta et 

al. 1992).

 

(Insert Figure 7 here)

 

The knowledge-editor user selects from the problem class hierarchy to specify the prob-

lems that are relevant to a particular protocol (Figure 8). The user should be able to define 

protocol-specific concepts (e.g., a 

 

dose-reducing-toxicity

 

 in CCTG-522). There shall be a 

set of problem-abstraction mechanisms with which the domain expert can specify how a 

problem is to be derived from input data or lower-level abstractions (Shahar et al. 1992). 

The knowledge editor will check for completeness by making sure that an abstraction 

mechanism has been instantiated for every problem mentioned in a protocol. 

 

(Insert Figure 8 here)

DISCUSSION

 

The first PROTÉGÉ system built in our laboratory assumed that the application task for 

which it was designed could be viewed in terms of the ESPR model. The tool provided a 

language for expressing domain concepts in terms that a special-purpose inference engine 

(e-ONCOCIN) could use. This assumption of a fixed method and the consequent fixed 

knowledge roles allowed a knowledge engineer working with PROTÉGÉ to generate 

graphical knowledge editors that were tailored to the application area. These editors could 

be used by domain specialists to enter the detailed content knowledge required by the 

problem solver. 

The assumption of a fixed problem-solving method, however, made PROTÉGÉ brittle in 

two respects. First, the system by definition cannot be used for tasks and methods for 

which it is not designed. Even for a given task, there may be several alternative solution 

methods, each of which is more appropriate in certain situations than in others. Second, a 
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monolithic method cannot anticipate all possible variations in the ways that knowledge is 

applied in a domain. The method is applicable in only domains where the knowledge 

requirements fit the method exactly, down to the most detailed level of abstraction. For 

those aspects of the knowledge that depend on domain-dependent considerations (e.g., a 

procedure for calculating the current dose of a drug), the skeletal-planning model in PRO-

TÉGÉ defines no explicit knowledge roles that users can simply fill in. 

In our current work, we deal with the problem of brittleness in three ways. First, we gener-

alize the PROTÉGÉ framework so that, instead of using one fixed problem-solving 

method, our system has libraries of tasks and methods for solving those tasks. Configuring 

or assembling the problem-solving method becomes the first step in the knowledge engi-

neer’s interaction with PROTÉGÉ-II. This ability to tailor problem solvers for alternative 

tasks extends the range of the tasks for which PROTÉGÉ-II can be used, and allows the 

knowledge engineer to associate multiple methods with the same task. Second, the uni-

form view of problem solving as using methods to accomplish tasks allows us to use the 

same type of knowledge-level analysis at multiple levels of granularity. For a small-

grained task, such as making an abstraction from data, we can define correspondingly 

small-grained domain-independent data-abstraction mechanisms. As a method is decom-

posed into subtasks that have their own solution methods, selecting a top-level method 

does not have to fix the methods for the subtasks. This capability to define problem-solv-

ing methods at multiple levels of granularity allows great flexibility in custom-tailoring 

the problem-solving behavior for a particular task. Third, we emphasize the use of

 

 

 

a

 

 data 

model 

 

and of a

 

 control model

 

 that provide general-purpose languages for configuring and 

assembling problem-solving methods. These models are tools that a knowledge engineer 

uses for custom-tailoring the knowledge editors and the problem-solvers generated by 

PROTÉGÉ-II.
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We allow for the specification of domain-dependent control knowledge by defining lan-

guages (such as the flowchart language used in Figure 3) for expressing such knowledge 

and by defining specialized mechanisms that interpret them. These mechanisms are 

invoked within specific methods (e.g., the flowchart in Figure 3 is interpreted by a decom-

position mechanism that is invoked in only the 

 

instantiate-and-decompose

 

 method). Thus, 

we allow the specification of domain-dependent control knowledge, but only in con-

strained contexts. Such constrained use of domain-dependent control knowledge gives us 

the necessary flexibility while retaining the advantages of role-limiting methods.

We recognize that developing a knowledge-based system is a complex task requiring both 

the modeling expertise of a knowledge engineer and the domain expertise that only an 

application specialist can provide. We address both requirements, as in the first version of 

PROTÉGÉ, by dividing the knowledge-acquisition process into two phases. In the first 

phase, the knowledge engineer uses the modeling tools of PROTÉGÉ-II, such as the 

libraries of tasks and methods and data-model and control-model languages, to configure a 

problem-solving method for the task and the domain. Based on the knowledge require-

ments of the configured method, PROTÉGÉ-II generates a domain-specific knowledge 

editor that the domain specialist can use to enter the necessary domain knowledge.

Our group’s project to seek ways of extending PROTÉGÉ’s method-oriented architecture 

parallels work by a number of other researchers to develop ways to adapt problem-solving 

methods to the needs of particular domain tasks. For example, researchers at the Free Uni-

versity in Brussels have developed a componential framework (Steele, 1990) and have 

implemented a prototype testbed (Vanwelkenhuysen, 1990) that bear similarities to the 

PROTÉGÉ-II architecture. The componential framework requires the system developer to 

analyze a task in terms of input and output, available domain knowledge, case model, and 

pragmatic constraints—such as incompleteness of the data—that may be present in the 

domain. A problem-solving method in the componential framework may have domain 
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models that decompose a task into subtasks or it may solve a task directly. The implemen-

tation uses a frame system that allows representation of each component of the framework 

as an object that can be tailored dynamically to the problem at hand.

PROTÉGÉ-II differs from the componential framework more in degree than in kind. In 

the componential framework, domain knowledge is part of the task characterization, and 

the method contains the procedural control structure. In PROTÉGÉ-II, on the other hand, 

both the knowledge and the control structure are associated with the problem-solving 

method. Although the componential framework is consistent with a two-phased approach 

to knowledge acquisition, such as PROTÉGÉ methodology, Steels (1990) sees the devel-

opment of knowledge-based systems as primarily the responsibility of the knowledge 

engineer. Our emphasis on the division of labor between knowledge engineers and domain 

experts leads us to develo a set of data and control models that knowledge engineers can 

use to configure and assemble methods, and to explore techniques for generating domain-

specific knowledge-acquisition systems from such configured methods.

Faced with brittleness problems in the Generic Task architecture (Chandrasekaran, 1986), 

investigators at Ohio State University are developing to an approach in which generic 

tasks are implemented in SOAR (Johnson et al., 1990). Each generic task is represented 

within a SOAR problem space (Laird et al., 1986). As such, the inputs to the generic task 

are modeled as the initial state of the problem space; the desired output of the generic task 

is modeled as the goal state; and the problem-solving method is modeled using operators 

available within the problem space. The Ohio State group hopes that SOAR’s universal 

weak method will provide a common foundation for all generic tasks, and that SOAR’s 

universal subgoaling behavior will facilitate the integration of multiple generic tasks that 

each may contribute to problem solving at different levels of granularity. A significant 

advantage of the SOAR approach is that the weak methods in SOAR provide a default 

problem solver when specific domain knowledge is not available. It is not clear, however, 



 

26

 

how the SOAR representation itself can make explicit the roles in which knowledge is 

used in problem solving to facilitate the generation of knowledge-acquisition tools like 

those created by PROTÉGÉ. 

McDermott’s group at Digital Equipment Corporation shares our view that problem-solv-

ing methods can be composed from more primitive building blocks called mechanisms 

(Klinker et al., 1991), and that these mechanisms can define distinct roles for the knowl-

edge that knowledge-acquisition tools can supply. The group at Digital is developing a 

metatool called Spark, which will help a developer to select mechanisms from a library, 

and will combine these mechanisms to construct problem-solving methods accommodat-

ing the requirements of particular application tasks. The output of Spark is a knowledge-

acquisition tool (called Burn) that will allow users to enter specific domain knowledge. 

Despite strong similarity, PROTÉGÉ and Spark are being designed for different commu-

nities of users. Our research group assumes that knowledge engineers will be the principal 

users of PROTÉGÉ and that these engineers will want to configure new problem-solving 

methods explicitly. The developers of Spark, however, anticipate that the primary users of 

their tool will be nonprogrammers; thus, they are building Spark to select and modify con-

figurations of mechanisms programmatically based on features of the application task 

(Klinker et al., 1991). Spark itself does not address the problem of how to guide knowl-

edge engineers in their assembly of different mechanism configurations; in contrast, pro-

viding such guidance is a major concern for the new version of PROTÉGÉ. Our group is 

experimenting with a number of visual languages that may help knowledge engineers to 

construct complex datatypes in the method-configuration process and to view complex 

relationships among mechanisms (Puerta et al., 1992).

It is encouraging that several research groups are converging on similar methodologies for 

developing knowledge-based systems. In all these projects, considerable attention is given 

to identifying what problem-solving abstractions are appropriate and useful and how these 
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small-grained abstractions might be combined into useful problem-solving methods. 

Although there are important differences in the manner in which the various architectures 

allow users to assemble and instantiate problem-solving methods, a primary challenge 

faced by all groups is describing, at the knowledge level, appropriate tasks and methods. 

This common framework raises the possibility that these descriptions of problem-solving 

behavior can be shared across the research groups.

This paper reports on work of an ongoing project. As we implement the problem-solving 

abstractions for the method of ESPR and test similar ideas in other application areas, we 

will refine our languages for describing data, domain knowledge, and control information. 

The framework described in this paper will give us a basis for developing custom-tailored 

knowledge-acquisition tools, and flexible and extensible problem solvers.
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