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ABSTRACT

Method-oriented knowledge-acquisition tools are based on
a model, or method, of problem solving and can acquire
knowledge for the class of tasks that can be solved with that
particular problem-solving method. The capture of
knowledge takes place in knowledge editors. These editors
are typically based on the individual tool's domain-
independent method; they fail to reflect task- and domain-
specific characteristics and have no ability to adapt to user
requirements. Mecano is a user-interface management
system that generates automatically adaptable knowledge
editors for the PROTEGE-II knowledge-acquisition shell.
Mecano allows knowledge engineers to specify the
components of a knowledge editor independently of any
underlying problem-solving method. It also provides
facilities for constraining the operations allowed on the
components, for selecting interaction styles for each
component, and for linking components to coordinate their
simultaneous display. Knowledge editors generated by
Mecano take into account the needs and requirements of
given tasks, domains, and users, and guide the users
through the knowledge-editing process by providing visual
cues and by limiting the permissible editing operations to
those relevant in the domain of interest.
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INTRODUCTION

One of the most challenging tasks in the development of
knowledge-acquisition tools is the specification of a user
interface that allows domain experts to enter knowledge
into a knowledge base. This interface usually takes the
form of aknowledge editotA knowledge editor permits a

user to view, modify and augment the contents of a
knowledge base. Existing knowledge editors have varied
interaction styles [9]. One commonality in most of these
tools, however, is thenanual specification by the tool
developers of the knowledge editor. Examples of this type
of interface specification are SALT [7], a tool for acquiring
knowledge on constraint-satisfaction tasks, such as
scheduling, and ROGET [2] a tool for problem-diagnosis
tasks. One exception to the manual definition of knowledge
editors is PROTEGE [8]. This knowledge-acquisition tool
operates at thenetaleveland generateautomatically a
knowledge editor for a given task.

All three tools mentioned belong to a class of architectures
called method orientedbecause they assume a single
model, or method, of problem solving for the tasks for
which knowledge is to be acquired. Thus, ROGET assumes
a variation of heuristic classification [3], SALT a propose-
and-revise problem-solving strategy [7], and PROTEGE a
form of the model of skeletal-plan refinement [8].
Presupposing a particular model of problem solving has
two major limitations. First, the usefulness of method-
oriented tools is limited to the class of tasks that can be
solved with the given problem-solving strategy. Second,
since these problem-solving methods are domain-
independent, the knowledge editors developed—or
generated, as in the case of PROTEGE—are based on the
characteristics of the problem-solving methods and do not
account for the needs and requirements of specific tasks,
domains, or users. The result is that the interfaces of the
knowledge editors follow the computational requirements
of the knowledge-acquisition tools, rather than the
cognitive requirements of the users of the knowledge
editors.

To eliminate the restrictions to applicability of method-
oriented architectures, we are developing in our laboratory
PROTEGE-Il [10,11], a knowledge-acquisitioshell
operating at the metalevel, that does not presuppose any
particular problem-solving method and that allows



knowledge engineers to build knowledge editors for
different methods. Since it is not possible to know
beforehand which method will be selected, the automatic
generation of knowledge editors in this shell cannot be
based on the characteristics of a particular method, as it was
in the original PROTEGE system. In this paper, we present
Mecano, a user-interface management system for
PROTEGE-II that provides a common framework for the
automatic generation of knowledge editors under multiple
problem-solving methods. Mecano also deals with the
shortcomings of not taking into account task, domain, and
user requirements by generating knowledge editors that are
adaptable. Using the facilities of Mecano, knowledge
engineers can adapt the knowledge editors produced by
Mecano to the characteristics of specific tasks, domains,
and users.

Although other researchers of knowledge-acquisition tools
are examining means to develop multiple-method
architectures [6,12], they have generally disregarded the
problem of developing knowledge editors that are suited
for individual tasks and domains. As a consequence, even
when a knowledge editor can be built for a given task, its
usefulness may be highly constrained because the interface
of the knowledge editor does not allow users to enter
knowledge in a way that is natural in the domain of interest.
In Spark [6], a metatool that assists nonprogrammers in
automating tasks, the interface for knowledge acquisition is
general purpose and fails to adapt to single tasks or
domains. In DOTS [4], a metatool that is not method-
oriented, it is possible to build task- and domain-specific
knowledge editors. The process for each new knowledge
editor, however, requires the developer to write the
complete specification of the interface using a toolkit layer
that resides on top of the host window system. The aim of
Mecano, on the other hand, is to automate, as much as
possible, the construction of a new knowledge editor and to
provide functionality to fit such an editor to the
requirements of the given task, domain, or user.

THE MECANO APPROACH

Mecano views the problem of generating a knowledge
editor as one of writing a specification for an interface.
Thus, facilities must be provided by the system to define
the interface components, to determine the operations
allowed on the components, and to establish the
relationships among components. We can best discuss how
Mecano covers the required functionality by examining its
role within the context of the PROTEGE-II knowledge-
acquisition shell. This environment is used by knowledge
engineers to build new knowledge editors for specific tasks
and domains. The editors are in turn used by domain
experts to enter knowledge into knowledge bases, or to edit
knowledge already entered. The creation and use of a
knowledge editor is accomplished through a process that

involves the four phases shown in Figure 1. Although we
shall describe all phases, we shall concentrate on the
bottom three in Figure 1, since those are the ones affected
by the actions of Mecano.

The process of building a new knowledge editor begins
with the method-selection phas®uring this phase, the
knowledge engineer searches through a library of methods
for a problem-solving strategy that best fits the task of
interest [11]. Normally, a certain amount of custom
tailoring of existing library methods is necessary; in some
instances, if the search does not yield any suitable
candidate methods, the knowledge engineer may be
required to define a new problem-solving method using
PROTEGE-II. Ultimately, at the end of this phase, a single,
domain-independent method will be specified and its
characteristics will determine how the next phase is
conducted. The selected method will impose requirements
on what knowledge is necessary to solve a particular task,
how the task is solved, and what is the role that each piece
of knowledge will play in the solution of the task.
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Figure 1. The four phases for the definition of new
knowledge editors in PROTEGE-II. Mecano supports
functionality for the definition of interface
components for the knowledge editor, for the
selection of interaction styles for each component, for
the declaration of constraints to limit the types of
operations allowed on such components, and for the
specification of dependency links among components
to manage simultaneous display of dependent
components.
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The knowledge requirements imposed by a method create
a framework for the definition of domain-specific concepts
in terms of the problem-solving method. Thus, during the
task-modeling phasthe knowledge engineer examines the
given task in the context of the selected method and
identifies the relevant domain concepts and the role that
they play in solving the task problem. The result is a model
of a task that is used for two purposes: (1) generating a
knowledge editor to enter the required knowledge into a
knowledge base, and (2) supplying an inference engine
with a problem-solving model with which to reason about
the knowledge present in the knowledge base [10]. It is
during this phase that Mecano starts gathering the
specifications needed to generate a knowledge editor. Users
can stipulate which domain concepts will be represented in
the knowledge editor as interface components. A
knowledge-editor interface component, for our purposes, is
any interaction element (e.g., a form blank, or a graphical
element in a graphical editor) that can be employed to
capture the needed knowledge from the domain expert. In
addition, users can choose the interaction style for each
defined interface component. The choice is normally driven
by the type of knowledge to be acquired (e.g., procedural,
or factual). Furthermore, the user can link together defined
interface components, so that linked components will be
displayed simultaneously when any of the linked
components is selected.

Once the user completes the model of the task, Mecano
enters amadaptation phasegduring which it generates a
preliminary knowledge editor with all the interface
components declared during task modeling. Normally, the
interface components fall into two categories: graphical
elements in a palette, or blanks in forms. The graphical
elements are used to draw diagrams in a graphical editor;
the form blanks are used to enter facts. The generated editor
is considered preliminary at this point because of its
adaptable nature. The knowledge engineer can modify the
editor such that task- and domain-specific characteristics
are taken into account. The adaptation takes place by means
of constraint declarations that affect how the interface
components are manipulated by the domain expert, and by
subclassing of components, which permits changes to the
appearance of the components in the editor. Previous
method-oriented architectures could not account for the
characteristics of individual tasks and domains because
there was a direct, unchangeable path between the task
model and the knowledge editor. Given that the task models
are derived from domain-independent methods that apply
to a broad class of tasks, task- and domain-specific
considerations were absent from the knowledge-editor
construction process. We added an adaptation phase, so
that Mecano can permit the definition of task models from
domain-independent methods while allowing for the
incorporation of single-task and single-domain features.

After the user adapts the editor, Mecano manages the
editing sessions with the domain expert during the
knowledge-editing phasé\ constraint verifieralerts the
user to illegal operations with the interface components,
and astructure managecoordinates the display of linked
components. In addition, the system keeps track of any
further subclassing of knowledge-editor interface
components that may be needed in this phase in order to
maintain proper relationships between the new subclasses
and the task model.

In the next three sections, we shall illustrate the use of
Mecano with an example taken from the medical domain.
The overall effect of the use of the features of Mecano is the
production of knowledge editors that not only serve as

environments for knowledge acquisition, but also guide the
domain expert through the acquisition process by providing
visual cues and by limiting the number of allowed user

actions to those that are valid for the task for which

knowledge is being captured.

THE TASK-MODELING PHASE

The example that we shall discuss assumes that a
knowledge engineer is using PROTEGE-Il to build a
knowledge editor to capture knowledge about treatment
plans (calledprotocolg for cancer patients. During the
method-selection phase, the knowledge engineer selected
skeletal-plan refinemeft] as the problem-solving method
that will be applied during task modeling. This particular
method solves problems by creating solution plans. It starts
with an abstract (skeletal) plan, then refines this plan by
decomposing it into constituent plans recursively until a
final, fully detailed solution plan is completed. The strategy
is suitable for cancer protocols because a protocol can be
viewed as a fully detailed plan for the treatment of patients.

In skeletal-plan refinement, models of tasks are built
around three concepts: planning entities, input data, and
actions. Planning entities are problem-solution
components (plan components) that can be decomposed
into other planning entities thereby forming a hierarchy.
Input dataare extracted from the associated environment.
In our case, data will take the form of, for example,
laboratory-test resultsActions are procedures that can
modify planning entities. For example, drug-dosage
attenuation is an action that must be modeled in our
domain. The methods available in the library of
PROTEGE-II include in their definitions an interface
specification for the modeling of tasks. Figureshows

part of the task-modeling interface for skeletal-plan

1. Legibility of screen snapshots is limited by
technical limitations. A high-resolution linotropic
printer will be available for the final draft of this
paper.
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Figure 2: The task-modeling phase. The knowledge engineer defines which domain concepts will be part of the knowledge
editor and what interaction style will be used to display them. In addition, the knowledge engineer can link two
components, such as “chemo” with the “chemotherapy” form (shown at right), to cause their simultaneous display during

the knowledge-editing phase.

refinement. In the figure, the knowledge engineer is
declaring the planning-entity hierarchy for the domain of
oncology. The hierarchy determines that plans in this
domain are made up of protocols. The protocols can be
decomposed into chemotherapies (administration of drugs
to patients) and radiotherapies (administration of X-ray
treatments to patients), labeled “chemo” and “xrt” in Figure
2, respectively. Chemotherapies can be further decomposed
into drugs. Using separate parts of the task-modeling
interface, the knowledge engineer defines all remaining
relevant domain concepts (input data, actions) under the
terms of the domain-independent skeletal-plan refinement
method.

In addition to the task-modeling interface, Figure 2 also

depicts two Mecano windows that allow the definition of

components of the knowledge-editor interface: selection of
interaction styles, and linking of interface components. The
knowledge engineer is designating “chemo” as one of the
components and declaring that this component must be
represented in the palette of graphical elements that
Mecano generates. Currently, only two interaction styles
are available: graphical-based and form-based. The
knowledge engineer chose graphical-based interaction for
the component “chemo” because protocols involve

procedural knowledge and are usually represented by
physicians as flowcharts. Thus, the intention of the
knowledge engineer is to enable expert physicians to
employ the palette of graphical components to draw
flowcharts in a graphical editor during the knowledge-
editing phase, making the knowledge-acquisition process
similar to their usual protocol-authoring activities.

Although the concept of chemotherapy is declared by the
user, in this example, as a graphical-style component,
certain attributes related to the concept—such as duration,
number of drug-administration subcycles, and duration of
each subcycle—cannot be expressed efficiently in a
graphical style. Therefore, Mecano features a formal
language, called FormIKA [1], for the declaration of forms
as interface components. FormIKA permits the
specification of the appearance and layout of forms, and the
definition of display dependencies among forms, which in
effect creates a tree of forms that can be navigated by the
user. During task modeling, the knowledge engineer can
also stipulate display dependencies between graphical-
style components and forms, or between graphical-style
components and individual blanks in forms. In our
example, the user is linking the component “chemo” with
the form “chemotherapy” (see Figure 2). This form is the
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Figure 3: The adaptation phase. The palette at the top is part of the Mecano-generated preliminary knowledge editor. In
the bottom palette, the knowledge engineer has defined subclasses of the components in the top palette to make these more
expressive. The text window shows part of the declaration of connectivity constraints affecting the components in the

bottom palette.

top node in a tree of forms that the user can be access by
clicking on the buttons displayed on the form. During the
knowledge-editing phase, the link determines that, every
time that a new chemotherapy is defined by the domain
expert, the linked form is displayed to the expert to collect
all the required information on the new chemotherapy. This
feature relieves the domain expert from the burden of
having to know which form, or which piece of information,
must be provided every time a new protocol, chemotherapy,
or radiotherapy is declared. By linking the interface
components in this manner, Mecano is able to guide the
domain expert through the knowledge-editing session. The
expert is neither presented with a bewildering array of
interface components, nor required to understand the role
of each one in relationship to all others. Instead, Mecano
generates knowledge editors that display a few components
that serve as a gateway to the rest of the interface
components in a logical and orderly manner.

THE ADAPTATION PHASE

The interface specifications gathered during the task-
modeling phase are used by Mecano to generate a
preliminary knowledge editofhis editor, although fully
functional, yet is adaptable; during this phase, it will be
modified by the knowledge engineer to fit more closely the
needs and requirements of the given task and of the target
domain-expert users. The adaptability of the preliminary
editor is permitted by the object-oriented approach that
Mecano uses to define interface components. Every
component declared during the task-modeling phase is
assigned a class. The process of adapting the knowledge

editor then becomes one of defining subclasses of the
component classes that reflect more accurately the
peculiarities of individual tasks and domains, and that are
tailored to accommodate the needs of the expected users of
the knowledge editor. In addition, knowledge engineers can
define constraints that apply to the component subclasses
and that will be enforced during knowledge editing. In this
manner, Mecano bridges the gap between an editor derived
from a domain-independent problem-solving method and
an editor built for a specific task.

The preliminary editors generated by Mecano consist of a
palette of graphical elements, a set of forms, and a set of
links between forms and graphical elements. Figure 3
shows the palette of components of the preliminary editor
for our oncology therapy example. Complementing the
components declared during task modeling (“chemo,”
“xrt,” “drug,” and “stratify”) are other components that
belong to a special class a@bntrol components that
Mecano defines as primitives, and from which the user
simply selects those needed in the current task. In Figure 3,
the user has defined—by using a browser similar to that of
Figure 2—subclasses of the palette components in the
preliminary editor to change the appearance of the
components and thus to make them more expressive within
the context of our example problem. Furthermore, the user
has declared constraints that affect the connectivity of the
palette components. In this case, connections such as
“start-stop” and “chemo—chemo” have been disallowed. By
imposing such constraints, the knowledge engineer ensures
that the operations on components that the domain expert



will be able to perform exclude those that do not apply to
oncology therapy.

The stipulation of constraints for palette components is
achieved through a formal language called Palette
Constraint Language (PCL). In the case of forms,
constraints that affect the blanks in the forms are specified
in the FormIKA language. Both languages allow
constraints to be defined declaratively, as opposed to
requiring the knowledge engineer to write procedural
attachments to the interface components. The constraints
declared in FormIKA are of two types: value and visual. A
value constrainsubordinates the value displayed in a blank
to the value displayed in another blank. Therefore, when
the user updates the latter, the subordinate blank is updated
automatically. In the case of a numeric value, the update
may be calculated through a mathematical formula. On the
other hand, &isual constrainfrovides visual cues to the
user by activating or disabling blanks according to the
actions taken by the user. To illustrate the use of FormIKA
constraints, we consider the “chemotherapy” form
displayed in Figure 2, which constitutes the top of a tree of

Figure 4 shows a snapshot of an editing session for the
cancer-therapy example. Components from the palette are
dragged into the drawing area of a graphical editor, and are
connected to represent the procedural knowledge inherent
to an oncology protocol. In some instances, the user must
subclass a palette component when it is dragged into the
drawing area. For example, the domain expert has declared
two subclasses of “chemo” in Figure 4. “VAM” and
“POCC.” The declaration of subclasses takes place in a
browser similar to that shown in Figure 2 for the linking of
components. Immediately after the declaration of a new
subclass of “chemo,” Mecano displays the “chemotherapy”
form as was stipulated by the knowledge engineer. The
domain expert can then proceed to enter the information
required for the new chemotherapy by following the visual
cues offered in the “chemotherapy” form.

When the domain expert declares a subclass of an interface
component, the new subclass inherits all the constraints
that affect the superclass. Thus, the subclass “VAM”
inherits the constraint that disallows the “VAM-VAM”
connection. Because of this constraint, it is not possible to

forms to enter facts about a chemotherapy. Because a value connect “VAM” to itself. Figure 4 depicts a panel alerting
constraint has been declared, once the user enters a name in the user that this particular constraint is being violated in

the “Chemotherapy” blank, that name is propagated to all
the other forms in the tree that are available by clicking on
the respective buttons in the top form. Due to a visual
constraint in the “Define Cycle Info” subform (not shown),
once the user enters the name of a new subcycle of
chemotherapy administration, a blank is highlighted
prompting the user to enter the number of days that the
subcycle lasts.

The combination of links between palette components and
forms, constraints on palette-component connectivity, and
constraints on form blanks enables the knowledge editors
generated by Mecano to guide the domain expert through
the editing session. The links and FormIKA constraints
create asuggested patto follow for the domain expert by
having Mecano either display a form that must be filled in
or activate a blank that must be updated. The PCL
constraints define dlegal patls away from which the
domain expert is steered by displaying alert panels that
advise the expert user on the illegal operation attempted.

THE KNOWLEDGE-EDITING PHASE

The role of Mecano during the knowledge-editing phase is
one of management of the editing session. Mecano
coordinates the display of linked interface components,
verifies that PCL constraints are not violated, and controls
the declaration of new components by the domain expert.
The domain expert declares new editor-interface
components by further subclassing the existing interface
components.

the current protocol.

LIMITATIONS AND FUTURE WORK

Although Mecano can generate editors independently of
the selected problem-solving method, the choice of
interaction styles for the declared interface components is
limited. Presently, a component can be only a graphical
element in a palette, a form, or a blank in a form. As a
result, it is difficult to specify knowledge editors for tasks,
or for problem-solving methods, that require different
interaction styles to capture knowledge effectively from the
domain expert. Therefore, it is important that we improve
the versatility of Mecano by featuring a wider choice of
available styles.

The use of separate languages to define constraints on the
two interaction styles is also troublesome because neither
language is general enough to be extended and applied to
other interaction styles that may be added in the future.
Furthermore, because PCL allows only connectivity
constraints, it is useful only for nodes-and-links diagrams.
The solution that we are pursuing is to develop a single
language with a high degree of generality that can
accommodate constraint declaration for multiple
interaction styles and diagramming paradigms.

Mecano is highly adaptable to individual tasks and
domains. Adaptation to individual users, however, is
limited to modifying the layout of forms, or changing the
appearance of the palette components. We are exploring the
possibility of enforcing constraints in different ways for
different users. For example, the suggested and illegal
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Figure 4: The knowledge-editing phase. Mecano manages
by coordinating the display of linked interface components.

paths established in the knowledge editor by the knowledge
engineer could change for users who have different levels
of expertise in the use of the knowledge editor. The

suggested path would be more flexible (fewer visual

constraints) for an experienced user and more rigid for a
novice, whereas the illegal path would be extensive (more
connectivity constraints) for a novice and more constricted

for an experienced user.

CONCLUSIONS

We have presented Mecano, a user-interface management
system that generates knowledge editors for the
PROTEGE-II knowledge-acquisition shell independently
of the underlying problem-solving method selected for task
modeling. Mecano not only provides a general framework
for the construction of knowledge editors for multiple
methods—a previously unavailable feature in knowledge-
acquisition tools—but also automates the construction
process and reduces the task of creating a new editor to one

the editing sessions by conducting constraint verification and

of specifying the components of the editor and the
relationships among those components.

Mecano also overcomes a deficiency of previous method-
oriented knowledge-acquisition tools—namely, the
dependency of the interface of the knowledge editor on the
computational demands of the domain-independent
problem-solving method on which the tools are based.
Mecano generates knowledge editors that are also based on
a selected method, but that are adaptable to the needs and
requirements of the task and domain for which knowledge
is acquired, and to those of the users of the knowledge
editor.

Through the use of constraints and the declaration of
display dependencies among interface components,
knowledge editors generated by Mecano guide the domain
expert during the editing sessions, providing visual hints of
what actions are expected of the user, and disallowing



operations on the interface components that are invalid 9.
within the context of the current task.

The success of Mecano serves as a clear indication of how

certain fields, such as knowledge acquisition, can benefit
from human—computer interaction research, and how the
solution to some of the field’s key challenges can best be

obtained by increasing the focus on interface issues that

had previously taken a back seat to the more traditional

knowledge-representation

and  knowledge-modeling

problems.
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