
1

Generation of Knowledge-Acquisition Tools
from Reusable Domain Ontologies

Angel R. Puerta, Henrik Eriksson, John W. Egar, and Mark A. Musen

Medical Computer Science Group
Knowledge Systems Laboratory

Stanford University
Stanford, California, 94305-5479, USA

Telephone: (415) 723-6979
E-mail: {puerta,eriksson,egar,musen}@camis.stanford.edu

Abstract
We present Mecano, a development environment that
automates the design of knowledge-acquisition software
tools for knowledge-based systems. Mecano is a
component of PROTÉGÉ-II—a development environment
for knowledge-based systems. Given an explicit model of
the domain—called a domain ontology—that is shared by
Mecano and the target knowledge-based system, we show
how a specification for a knowledge-acquisition tool can
be inferred. In particular, the domain ontology is used to
determine (1) the knowledge requirements of the target
knowledge-based system that must be fulfilled by the
knowledge-acquisition tool, (2) the appropriate dialog
sequences with users of the tool that ensures the
consistency and completeness of the acquired knowledge,
and (3) the presentation and layout of the components of
the tool’s interface. The use of shared domain ontologies
to design knowledge-acquisition tools facilitates the
integration of tools with target knowledge-based systems,
produces domain-oriented tools, and eases the propagation
of changes in the domain ontologies from the knowledge-
based systems to the knowledge-acquisition tools.

1. Tools as Interfaces
The development of knowledge-acquisition tools—
systems that allow either knowledge engineers or domain
experts to edit knowledge bases—presents a challenge to
developers of knowledge-based systems. Some of the
requirements that make these tools difficult to implement
are:

• High-level integration with a target knowledge-based
system

• Complex user interface with sophisticated dialogs1

• Strong orientation toward a single domain and task

• Limited number of users, sometimes as few as one

1. A dialog is the sequence of actions that an
interface allows a user to perform.

These requirements dictate that knowledge-acquisition
tools are often useful for only a single knowledge-based
system, or, at most, for a small class of systems based on a
common problem-solving method. Developers of these
tools generally emphasize the automation of the dialog
sessions with the users, and the translation of the results of
those dialogs into a proper format in the knowledge base.
As a result, knowledge-acquisition tools can, by
themselves, be intricate knowledge-based systems, thus
creating a situation where the development of one
knowledge-based system (e.g., an expert system)
necessitates the construction of another one (i.e., the
knowledge-acquisition tool). On the other hand, little or no
emphasis is placed on the automation of the design of the
tool. To design a new knowledge-acquisition tool,
knowledge engineers painstakingly examine the
knowledge requirements and data structures of the target
knowledge-based system, devise dialog sequences, decide
on presentation modalities, and, finally, build tools that
conform to these design specifications.

In this paper, we emphasize automated design of
knowledge-acquisition tools. We argue that these tools
should not be viewed as independent programs integrated
with other knowledge-based systems. Rather, they should
be viewed as interfaces that permit access to the data
structures of the knowledge-based system and that present
those structures to a user in a manner that ensures the
consistency and completeness of the acquired knowledge.
The problem of designing a tool therefore can be depicted
as that of writing an interface specification. We show how,
from an explicit structured collection of domain terms and
their interrelationships, called a domain ontology,
programs can infer such interface specifications by
applying dialog and layout rules. These domain ontologies
are shared by knowledge-acquisition tools and their target
knowledge-based systems, thus harmonizing the
integration of both types of systems. Domain ontologies
are reusable knowledge components [Musen, 1992;
Neches et al., 1991], and are useful across different

2

applications.

The knowledge contained in a domain ontology is the
basis for the generation of interface specifications for
knowledge-acquisition tools. In particular, from this
knowledge we can infer (1) the knowledge requirements
of the expert system that must be fulfilled by users of the
knowledge-acquisition tool, (2) the dialog sequences most
appropriate for user interaction, (3) the components of the
interfaces and their layout, and (4) the constraints that
affect the behavior of the interface. The generation of
knowledge-acquisition tools in our work takes place
within Mecano—a development environment for
knowledge engineers that provides a collection of software
tools to generate interface specifications, to custom-tailor
specifications, to produce and manage knowledge-
acquisition tools from interface specifications, and to
maintain knowledge bases. The generation of knowledge-
acquisition tools in Mecano provides the following
benefits:

• Automatic integration of the tool with the knowledge-
based system

• Generation of domain-specific tools, and, when user
preferences are included, user-specific tools

• Tool interfaces that conform to user-interface
guidelines

• Ease of propagation of domain-ontology changes into
the knowledge-acquisition tool

2. Related Work
There are many examples of knowledge-acquisition tools
developed in tandem with expert systems, but without
automation of the design process. These examples range
from early tools such as TEIRESIAS [Davis, 1979], to
more recent ones such as ROGET [Bennett, 1985] and
SALT [Marcus and McDermott, 1989]. The introduction
of metatools, such as PROTÉGÉ-I [Musen, 1989] and
DOTS [Eriksson, 1991], marked a departure from
completely manual design. PROTÉGÉ-I generates tools
directly from a role-limiting problem-solving method
[McDermott, 1988]. It is restricted to a single method,
and, because problem-solving methods are domain
independent, the interfaces of the resulting tools follow the
computational requirements of the method, and ignore the
interaction requirements of the domain of interest and of
the tool users [Puerta et al., 1992]. DOTS is not limited to
any specific problem-solving method; its function is to
assist knowledge engineers in the design of new tools,
rather than to automate the design process.

Researchers in human–computer interaction are studying
the generation of user interfaces from data models.
Systems such as HUMANOID [Szekely et al., 1992] and
UIDE [de Barr et al., 1992] use the data models of an

application to produce a user interface for that application.
The level of automation, however, is limited by the
expressiveness of the data models. A particular
shortcoming is the inability of these models to represent
relationships among the different data objects in the
application. We shall show that these relationships—
which are explicit in the domain ontologies used by
Mecano—are crucial in the generation of dialog sequences
for knowledge acquisition. The remainder of this paper is
organized as follows. Section 3 presents an overview of
Mecano. Section 4 explains how, from a domain ontology,
Mecano generates form-based knowledge-acquisition
tools. Section 5 contains conclusions and discusses open
research questions.

3. The Mecano Environment
The Mecano development environment is part of the
PROTÉGÉ-II architecture [Puerta et al., 1992; Puerta et
al., in press], shown in Figure 1, that is under construction
at our laboratory. PROTÉGÉ-II allows knowledge
engineers to construct expert systems from a library of

Figure 1. A schematic view of PROTÉGÉ-II. To
build a knowledge-based system, the developer
selects a domain-independent problem-solving
method from a library and, by editing a domain
ontology as required by the chosen method, maps
this method to a given domain. The developer then
uses the edited domain ontology to generate an
appropriate knowledge-acquisition tool. A domain
expert uses this knowledge-acquisition tool to edit a
knowledge base. The knowledge-based system uses
the selected problem-solving method to reason
about the knowledge base.

Mecano

KA-Tool
Generator

(DASH)
KA Tool

Knowledge
Engineer

End User

Domain
Expert

Knowledge
Base

Selected
Problem-
Solving
Method

Edited
Domain

Ontology

Library

Problem-
Solving
Methods

Domain
Ontologies

Knowledge Component

Knowledge-
Based
System

Software System

User

KA Tool

3

problem-solving methods, thus overcoming the single-
method limitation of PROTÉGÉ-I. The domain-
independent methods in the library are reusable and can be
combined to create other methods, thereby supplying the
building blocks for a broad range of applications [Eriksson
et al., 1992]. If a method is to be applied to a given
domain, the method must be mapped to that domain
through a domain ontology [Neches et al., 1991]. For our
purposes, a domain ontology is an explicit structured
collection of domain terms (e.g., a class hierarchy) and
their interrelationships. Domain ontologies are stored in
PROTÉGÉ-II in the same library system that contains the
problem-solving methods. The library of PROTÉGÉ-II
provides the facilities that allow knowledge engineers to
index and search ontologies and methods, to combine
methods to create new ones, and to map methods to
domains by editing ontologies.

A problem-solving method contains control knowledge
that is related (mapped) to a domain through a domain
ontology. Such mapped control knowledge guides the
reasoning process of knowledge-based systems built with
PROTÉGÉ-II. There is also, however, a need to acquire
the propositional domain knowledge on which the target
knowledge-based system will operate. In PROTÉGÉ-II,
this knowledge is acquired directly from domain experts
through knowledge-acquisition tools that are generated
from the domain ontology. Mecano provides a
development environment that allows knowledge
engineers to generate such tools with a minimum of
custom-tailoring and manual design. The knowledge-
acquisition tools are viewed as interfaces that (1) allow
users to fulfill the knowledge requirements of the problem-
solving method, (2) conduct dialogs with users (i.e.,
domain experts) in a manner that ensures the completeness
and consistency of the knowledge acquired, and (3)
present information to users in a style that is natural to the
latter. The last two points are particularly important when
domain experts are not sophisticated computer users.

Mecano functions as an integrated collection of software
tools to generate knowledge-acquisition tools from
domain ontologies. Figure 2 depicts the various types of
tools and components available in this environment.
Eventually, Mecano will support knowledge-acquisition
tools with multiple interaction styles, such as
combinations of form-based and graph-based editors.
Separate sets of software tools are required to implement
each interaction style. The components shown in Figure 2
have the following features:

• Interface-specification generators input a domain
ontology; determine the dialog and layout
characteristics of the interface, according to a
knowledge base of dialog and layout rules; and output
an interface specification.

• Interface-specification customizers allow
knowledge engineers to refine the interface
specification and correct possible shortcomings of the
generated specification.

• Interface-language generators translate high-level
interface specifications into declarative interface
languages that can be linked with run-time libraries,
by interface-language compilers, to produce
knowledge-acquisition tools.

• Knowledge-base translators take the knowledge
representation acquired in the knowledge-acquisition
tools (e.g., a graph, or form data) and translate it into
an appropriate format for the knowledge base of the
target application of PROTÉGÉ-II.

In this paper, we concentrate on the generation of
interfaces from domain ontologies. The conceptualization
and use of a declarative interface language for forms has
been reported elsewhere [Bennett, 1990], as has the
interpretation and translation of graphs into a textual
knowledge representation [Egar, Puerta, and Musen,
1992].

4. Generation Of Tools From Ontologies
In this section, we discuss a component of Mecano called
DASH (Figure 2). This subsystem implements
functionality for interface-specification generation and

Figure 2. The Mecano development environment.
Interface specifications are generated from domain
ontologies. The specifications may be custom-
tailored by the knowledge engineer according to
user preferences. The custom-tailored specifications
are converted into textual specifications in one or

Mecano

DASH

Edited
Domain

Ontologies
Knowledge

Bases

Interface-
Specification
Generators Knowledge-

Base
Translators

Interface-
Language
Compilers

Interface-
Langauge

Generators

Interface-
Specification
Customizers

KA-Tools
KA-Tools

KA Tools

Knowledge Component

Software System

Custom
Adjustments

Persistent Storage

Interface
Languages

Run-Time
Libraries

4

custom-tailoring, as well as for interface-language
generation. The interaction style supported by DASH is
form-based knowledge acquisition.

By using domain ontologies as input to the interface
specification generators, and by viewing knowledge-
acquisition tools as user interfaces, we can approach the
problem of designing a new tool systematically. In DASH,
the design of a form-based tool is broken down into the
two principal design steps of a user interface: dialog
design, and layout design. The remainder of this section
details how the domain knowledge from the input domain
ontologies is applied to complete each of the two design
steps.

4.1 Generation of Top-Level Dialog Structures
The first step in generating a knowledge-acquisition tool is
to design the top-level dialog structure of the tool. In
DASH, the dialog structure is a nodes-and-links graph that
describes the nature of the knowledge-acquisition tool
from the user’s perspective. The dialog structure defines
what is the overall organization of a graphical user
interface, and how users can move among different
components of the user interface. The nodes in the graph
represent interface components such as menus, browsers,
or knowledge-editing windows (referred to as knowledge
editors). The links define the ways in which the user can
access these components. For instance, a knowledge-
acquisition tool may have a main menu that provides
access to several browsers, which allow the user to edit
sets of objects using knowledge editors.

DASH uses the relationships among the classes defined in
the ontology to design a dialog structure for the target
knowledge-acquisition tool. Thus, the definitions that
DASH uses as a basis for tool design are the same as those
that the problem solver—the problem-solving method of
the target knowledge-based system—uses for reasoning.
DASH analyzes the network that these relationships form,
and creates a dialog structure where knowledge editors
operate on objects of the ontology, and where users can
create and browse objects according to their ontology
definitions.

A subsystem of DASH—the dialog designer—generates a
dialog structure, which provides the basis for subsequent
generation of a complete knowledge-acquisition tool, from
the input ontology. The algorithm that DASH uses for
transforming the ontology to a dialog structure consists of
the following steps:

1. Index the class definitions and the relationships
among them.

2. For all classes defined, create a user-interface
prototype component.

3. For all component prototypes, link the prototypes
according to the relationships among the classes of
the ontology (i.e., according to the slot types).

4. Add the user-interface components required to access
all components of the emerging graph (e.g., main
menu and browsers) according to a set of dialog rules
based on guidelines for user-interface design.

5. Optimize the graph representing the dialog structure
by applying refinement rules (e.g., combining two
small windows to one larger window by merging two
nodes representing the initial windows), and
instantiate the prototypes to operational windows,
menus, browsers, and so on.

We shall illustrate how the dialog designer operates by
providing an example of the generation of dialog
structures in DASH. Figure 3 shows a sample ontology
from a scheduling problem in an airport domain; the task
is to coordinate the scheduling of airplanes, gates, and fuel
trucks. The most general class, object, has the
subclasses service-constraint and air-traffic-

obj . The class air-traffic-obj has the subclasses
gate and mobile-resource . The latter subclass
represents vehicles at the airport—such as airplanes and
fuel trucks. Figure 4 shows the dialog structure generated
by the dialog designer. In this dialog structure, the main
menu provides access to three list browsers that manage
sets of service-constraints, fuel-trucks, and
gates . The arrows in the dialog structure represent the
accessibility relationships among the user-interface
components. The abstract classes object, air-

traffic-obj, and mobile-resource are not reflected
in the dialog structure because they cannot be instantiated;
it is pointless to provide editors for these classes. In

Figure 3. A sample ontology for the airport domain.
Given this input ontology, the dialog designer
produces a dialog structure for the knowledge-
acquisition tool.

object

service-constraint

gate

fuel-truck

airplane

mobile-resource

air-traffic-obj

is-a

5

addition to the user-interface components originating from
classes (i.e., service-constraint, fuel-truck, and
gate), step 4 of the generation algorithm ensures that the
dialog designer adds browsers for accessing these
components and a main menu that manages the target
knowledge-acquisition tool and that provides access to the
browsers.

4.2 Generation of Layouts for Form-Based Tools
Forms are an important type of knowledge editor. Forms
can be used by domain experts to enter and edit relatively
structured information. The layout designer of DASH
produces window and form layouts based on the dialog
structure and on additional information in the class
definitions (e.g., slot types). Normally, DASH produces a
form for each form-based knowledge-editor node in the
dialog structure—that is, DASH creates a form for each
class definition. The layout designer uses a layout
algorithm that derives from the domain ontology the
interface components (e.g., text fields and check boxes)
that make up each form. Then, it lines up the user-interface
components according to the slot definitions in the
corresponding class. Unfortunately, automated layout
algorithms have one central common problem: the design
space is exceedingly large and is influenced by many
factors, such as user preferences, that are difficult to
anticipate [Szekely et al., 1992]. Therefore, the goal of the
layout algorithm is not to generate a perfect layout for the
end user, but rather to generate a layout that provides a
good starting point for custom adjustments by the
developer. In this approach, the developer uses the
prototype layout that DASH generates as a canvas.
Custom-tailoring of the window layout is achieved by
direct manipulation in a graphical tool. For instance, the
developer can modify default labels generated from slot

names, and can reposition the fields on a form.

User-interface widgets provided by commercially
available window systems, such as X Window and
NeXTStep, can be abstracted to selectors [Johnson, 1992].
Selectors model user tasks in the user interface (e.g.,
selecting a particular item from a list of items). Selectors
can be instantiated to widgets at design time, or at run
time. DASH uses selectors as an intermediate design step
in the generation of forms. Table 1 shows the mapping
from slot types to selectors and widgets that DASH uses to
build form layouts. A slot of type integer, for example,
maps into a numeric selector, which can be instantiated to
a numeric field widget. DASH uses the preconditions on
these mapping rules to select among several widget
instances. For example, the enumeration type can be
instantiated as widgets for radio buttons, or as a single
pop-up menu widget.

We shall illustrate the generation of forms from class
definitions by providing an example of a form for airport
gates. In this example, the class gate contains the slots
gate-number, passenger-limit, and
international . The slots gate-number and
passenger-limit are of type integer ; the slot
international is of type boolean . Figure 5 shows the
resulting form. Numeric fields have been generated for the
number and the passenger limit of the gate, and a check
box has been generated for the international flag. The
developer can custom-tailor the form using direct
manipulation. DASH produces as output a description of
the target knowledge-acquisition tool in the form-
definition language FormIKA [Bennett, 1990], which can
be compiled into C code for efficient execution (see Figure
2). Domain experts can then use the forms to enter and edit
domain knowledge.

The PROTÉGÉ-II environment encourages developers to
build knowledge-based systems incrementally. Often, the

Table 1. The mapping from data types to selectors and
potential widget instances.

slot data type selector widget instance

integer numeric numeric field

real numeric numeric field

string string text field

boolean settings check box

toggle button

enumeration settings radio buttons

pop-up menu

Figure 4. A top-level dialog structure generated
for the airport ontology by the dialog designer.

service-constraint

gate

fuel-truckmain menu

list browser

list browser

list browser

6

domain ontology is modified and extended several times
during the development process. Such modifications and
extensions create a maintenance problem in that the
knowledge-acquisition tool generated must be updated to
support the new class definitions. Preserving manual
adjustments to the knowledge-acquisition tool over
regenerations of the tool presents additional challenges.
DASH supports persistent custom adjustments—that is,
DASH preserves the custom adjustments made by the
developer in a custom-tailoring database. For instance, the
developer can add slots to a class definition, and can use
DASH to regenerate the knowledge-acquisition tool.
DASH preserves the original custom layout of the form
generated for this class, and adds fields for the new slots to
the form. Thus, the developer can use DASH to generate
an initial knowledge-acquisition tool from an early version
of the domain ontology, and can continue refining the
knowledge-acquisition tool as the ontology evolves.
DASH implements persistent custom adjustments by
managing the custom-tailoring database. When custom
adjustments from previous sessions exist in the database,
DASH reapplies these adjustments before presenting them
to the developer and allowing additional changes.

5. Discussion
Traditionally, developers of knowledge-based systems
have had to design and build new knowledge-acquisition
tools each time their target knowledge-based system
employed a new problem-solving method [Bennett, 1985;
McDermott, 1988; Marcus and McDermott, 1989]. The
automation of the design of knowledge-acquisition tools
that is offered by Mecano offers important benefits for the
developers of knowledge-based systems. Two clear
advantages are (1) the direct integration of knowledge-
acquisition tools with the target knowledge-based systems;
and (2) the ease of propagation of changes to the domain

model employed by the knowledge-based system, into the
knowledge-acquisition tool. In particular, the consistency
of changes to the domain models is ensured by the use of
domain ontologies that are shared by knowledge-
acquisition tools and their target knowledge-based
systems. Mecano combines commitments of the domain
ontologies and of the problem-solving methods to create
the knowledge-acquisition tool and its user interface. The
obvious reduction in the developer’s programming burden
affords Mecano developers the freedom to produce a
separate knowledge-acquisition tool for each task and
domain—and potentially for each individual user—
regardless of whether the underlying problem-solving
method changes.

The use of domain ontologies in Mecano is consistent with
the framework of reusable knowledge components
[Musen, 1992; Neches et al., 1991]. In this approach, the
developer builds knowledge-based systems by assembling
them from several reusable problem-solving constituents
that operate on a common domain ontology. Within this
framework, the knowledge-acquisition tools that fulfill the
knowledge requirements of the problem-solving
components may be developed by either (1) associating a
generic knowledge-acquisition tool with each problem-
solving component, or (2) associating a domain-specific
tool with each task to be performed by the problem-
solving component. The first option, which is advocated in
systems such as Spark [Marques et al., 1992], has the
disadvantage that it does not produce domain-specific
knowledge-acquisition tools; such specificity is an
important requirement for many tools, especially with
regard to the definition of domain-specific dialogs with
users of the tools. Furthermore, the tight coupling between
a single component and a single tool, further complicates
the construction of systems that encompass multiple
problem-solving methods. In such systems, developers
must associate a knowledge-acquisition tool that combines
the features of the tools associated with each of the
individual problem-solving methods.

In PROTÉGÉ-II, we follow the second option. Mecano
generates knowledge-acquisition tools for systems that are
built from a library of problem-solving methods.
PROTÉGÉ-II relies on Mecano to generate domain-
specific tools. This approach allows knowledge engineers
to produce a knowledge-acquisition tool that insulates the
knowledge engineer from the structure of the problem
solver, and that provides a coherent conceptual model to
the expert, even if the problem solver is composed from
multiple problem-solving methods. The usefulness of
Mecano is not necessarily limited to knowledge-based
systems built with PROTÉGÉ-II. Given ontologies from
sources other than PROTÉGÉ-II, we can potentially
translate those ontologies from a standard interchange
format [Neches et al., 1991], and can incorporate them

Figure 5. The generated form for gates. The
developer can adjust the form layout through
direct manipulation.

7

into Mecano.

The role of environments such as Mecano is to assist the
developer in the design of knowledge-acquisition tools
from ontologies. This task can be seen as a mapping from
domain ontologies to user-interface ontologies of the
target tools. Because this mapping can be custom-tailored,
the developer can define several alternative mappings—
that is, alternative target knowledge-acquisition tools for
the same domain ontology. In this scenario, it is important
that changes to the common domain ontology do not result
in a need to remap all the alternative user-interface
ontologies that may have been produced before the
changes. Therefore, Mecano treats custom adjustments as
persistent mappings that can be reapplied automatically
with each new version of the domain ontology. We
estimate that it is possible to implement similar mappings
from ontologies to other target software. For instance, it
might be possible to use a tool similar to Mecano for the
automatic generation of database interfaces.

Through Mecano, we have found that domain ontologies
can direct the generation of knowledge-acquisition tools.
We believe that Mecano presents a framework where
knowledge-acquisition tool design follows directly and
automatically from the design of the corresponding
knowledge-based system.

Acknowledgments
This work has been supported in part by grants LM05157
and LM05305 from the National Library of Medicine, and
by a gift from Digital Equipment Corporation. Dr. Musen
is recipient of NSF Young Investigator Award IRI–
9257578.

We thank John Gennari, Yuval Shahar, Samson Tu, and
Eckart Walther for their insightful comments and
discussions, which have helped us to develop the concept
and design of Mecano. We are also grateful to Lyn Dupré
for editing a previous version of this paper.

References
Bennett, A. 1990. A Form-Based User Interface

Management System for Knowledge Acquisition.
Master’s Thesis. KSL-Report 90–43, Knowledge
Systems Laboratory, Stanford University, Stanford,
CA.

Bennett, J. S. 1985. ROGET: A knowledge-based system
for acquiring the conceptual structure of a diagnostic
expert system. Journal of Automated Reasoning
1(1):49–74.

Davis, R. 1979. Interactive transfer of expertise:
Acquisition of new inference rules. Artificial
Intelligence, 12(2):121–157.

de Baar, D., Foley, J.D., and Mullet, K.E. 1992. Coupling
application design and user interface design. In
Proceedings of CHI ‘92. Bauersfeld, P., Bennett, J.,
and Lynch, G., editors, pp. 259–266. Monterey,
California, May 1992.

Egar, J.W., Puerta, A.R., and Musen, M.A. 1992.
Automated interpretation of diagrams for specification
of medical protocols. In Proceedings of AAAI Spring
Symposium on Reasoning with Diagrammatic
Representations. Narayanan, N.H., editor, pp. 189–
192. Stanford, California, March, 1992.

Eriksson, H. 1991. Meta-Tool Support for Knowledge
Acquisition. Ph.D. Dissertation No. 244. Department
of Computer and Information Science. Linköping
University, Linköping, Sweden.

Eriksson, H., Shahar, Y., Tu, S.W., Puerta, A.R., and
Musen, M.A. 1992. Task modeling with reusable
problem-solving methods. In Proceedings of the
Seventh Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, Boose, J. H. and Gaines, B.
R., editors, pp. 8.1–8.24. Banff, Alberta, Canada,
October 1992.

Johnson, J. 1992. Selectors: Going beyond user-interface
widgets. In Proceedings of CHI ‘92. Bauersfeld, P.,
Bennett, J., and Lynch, G., editors, pp. 273–279.
Monterey, California, May 1992.

Marcus, S. and McDermott, J. 1989. SALT: A knowledge
acquisition tool for propose-and-revise systems.
Artificial Intelligence, 39(1):1–37.

Marques, D., Dallemagne, G., Klinker, G., McDermott, J.,
and Tung, D. (1992). Easy programming: Empowering
people to build their own applications. IEEE Expert,
7(3), 16–29.

McDermott, J. 1988. Preliminary steps toward a taxonomy
of problem-solving methods. In Automating
Knowledge Acquisition for Expert Systems, Marcus S.,
editor, pp. 225–256. Boston: Kluwer Academic.

Musen, M.A. 1989. Automated Generation of Model-
Based Knowledge-Acquisition Tools. London: Pitman.

Musen, M.A. 1992. Dimensions of knowledge sharing and
reuse. Computers and Biomedical Research, 25:435–
467.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R.,
Senator, T., and Swartout W.R. 1991. Enabling
technology for knowledge sharing. AI Magazine,
12(3), pp. 36–56.

Puerta, A.R., Egar, J.W., Tu, S.W., and Musen, M.A. 1992.
A multiple-method knowledge-acquisition shell for
the automatic generation of knowledge-acquisition
tools. Knowledge Acquisition, 4(2):171–196.

8

Puerta, A.R., Tu, S.W., and Musen, M.A. (in press).
Modeling tasks with mechanisms. International
Journal of Intelligent Systems.

Szekely, P., Luo, P., and Neches, R. 1992. Facilitating the
exploration of interface design alternatives: The
HUMANOID model of interface design. In
Proceedings of CHI ‘92. Bauersfeld, P., Bennett, J.,
and Lynch, G., editors, pp. 507–515. Monterey,
California, May 1992.

