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Introduction

While we are by now familiar with the concept of adaptive interfaces, little attention has been given to a

much more challenging type of systems: self-adaptive interfaces. This type of interfaces have the

capability of improving their performance over time. In the same manner that the adaptation process

requires some type of feedback from the user, the self-adaptation process involves obtaining feedback

from the adaptation process itself to be able to modify it according to an appropriate measure of success.

The quest for adaptation in interfaces is based on the fact that it is impossible for an interface designer to

anticipate the needs and requirements of each possible user of the system. Thus, postponing some inter-

action decisions until run-time allows the designer to create much more general interfaces. When the pro-
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cess of adaptation is itself flawed or inadequate, however, the interface designer is once again faced with

the task of redesigning the interface to correct the deficiencies. On the other hand, if the interface has the

capability of modifying its own adaptation method, then the designer is placed at a higher level of

abstraction and can produce interfaces considerably more general (useful for a larger number of users),

and tailorable (adapting to each user more efficiently as time goes on). Self-adaptation is particularly

important in multimedia interfaces where adaptation is complicated by the multiple means of

communication available.

The author takes the view of self-adaptive interfaces being knowledge-based and of self-adaptation as

being performed through the use of machine learning techniques. Earlier work [7] discussed the impact of

machine learning capabilities in the design and operation of the interface, and taxonomized the possible

learning objectives of a user interface. Admittedly, one serious roadblock in incorporating machine

learning into user interfaces is that there is no solid background on what learning techniques or

paradigms are more effective for a particular user interface.

With this problem in mind, the author developed a model of a self-adaptive interface [8] which gives to in-

terface developers rapid-prototyping capabilities to experiment with different learning techniques and

strategies. There are three main requirements for this model. First, it must be mappable easily to other

general, established models for intelligent interfaces so results obtained can be applied to interfaces

developed from those models. Second, it must not prescribe a learning strategy, a technique, or a

learning objective. Finally, it must be flexible enough to accommodate a number of learning strategies

and techniques and, at the same time, exhibit a degree of completeness that permits experimentation on

a majority of identifiable learning objectives for user interfaces.

Starting from Card’s triple agent model of intelligent interfaces [1] and using the blackboard model [4] as

an implementation foundation, a blackboard framework for experimentation with self-adaptation was

developed. L-CID (Learner for Computer Interface Development) is shown in Figure 1. It is a multilayer

model where the lower layer, Babieca, performs the interface functionality, thus, it is the horse of the

model. The upper layer, Tizona, can learn about the lower layer process, detect deficiencies, and make



appropriate changes to Babieca’s knowledge base, therefore, it is the sword of the model. The four major

knowledge sources in Babieca correspond to the four interface functions of translation (Discourse

Manager), user modeling (Modeling Expert), Task Modeling (Task and Domain Advisor), and help

(Intelligent Assistant). The four knowledge sources in Tizona correspond to the four learning processes of

training (Training Expert), performing (Performance Element), critiquing (Evaluation Expert), and

modifying a knowledge base (Representation Expert). The Performance Element is in fact, in the

multilayer view, the lower interface layer, Babieca.

In the following sections, an example of the use of L-CID to experiment with a learning technique for

modality selection is described.

Modality Selection with L-CID

One of the challenges present in building interfaces that can communicate in various modes and media,

such as visual and auditory media, or textual and graphical modes, is the need to properly match the

information to be presented to the user with the most appropriate channel of presentation. The problem of

modality selection and effectiveness of presentation has been studied by psychologists as part of

research on human factors [10]. In an intelligent user interface system able to exploit the multiple

channels of communications available to humans, the task of modality selection can become very

complex. The problem is compounded by the fact that for a specific presentation mode there are a

number of techniques which can be used to present the information in that single mode (e.g., pie charts

vs. bar charts). A possible course of action is to add heuristics to the system to deal with modality

selection decisions [6]. Given the fact that modality selection varies widely between users, and even

between tasks for one user, the number of heuristics needed could quickly grow to unmanageable levels.

Consequently, it was determined that modality selection is a process that could benefit by being a

learning objective in a self-adaptive system. Defining this learning objective in the context of the L-CID

model, yielded the following problem statement:

Given: A set of information types, a set of presentation techniques, and a set of multiple-valued user,



computer, environment, and task features.

Find: A complete mapping of each information type to one or more modalities under every valid

combination of values of user, computer, environment, and task features.

The learning technique selected to solve this problem assumed that the system would start with no knowl-

edge on how to map an information type to a presentation technique, but knowing, for a particular

information type, what presentation techniques were available in the interface. When no knowledge about

prior interaction exists, the technique randomly selects one available presentation technique. Random

choices that prove to be correct (as determined by the Evaluation Expert knowledge source) are used in

future occurrences while incorrect choices are discarded for future selections. After a certain period of

time, the system should have a complete mapping of information types to presentation techniques. This

learning technique, albeit naive, serves to illustrate the use of L-CID in quickly determining that

technique’s deficiencies, and making appropriate modifications to develop a more sophisticated

technique.

Testing the Learning Technique

The simulation of the learning technique in L-CID was implemented in GBB1 [2], a general-purpose black-

board development system. As a framework, L-CID is not constrained to this specific implementation. To

better illustrate the process of learning modality selection, a running example is shown in Figure 2. This

particular example involves a target scenario that must be learned by the system. The scenario consists

of a single feature for each of the models in the Modeling Expert knowledge source of L-CID: Username

(user model), Computer-Type (computer model), and Location (environment model); as well as a single

feature for the Task and Domain Advisor knowledge source: task-type (Task Expert). Note that some

knowledge sources in L-CID were not deemed relevant for this problem, thus, they were left out of the

implementation.The scenario also consists of an information type and a correct modality value to be

assigned for this specific combination of feature values. The correct modality assignment is only known to

the Evaluation Expert who uses it to determine whether the actions of the Modality Selector are

appropriate. The Modality Selector has knowledge about a set of valid mappings that can be used with



the specified Information type.

As seen in the example, in the first action cycle the system has no prior knowledge of which modality

must be selected, thus it randomly selects one value from the set of valid mappings. Since this value is

determined to be incorrect, the learning system drops it from the set of valid mappings. Once the system

randomly selects the correct value, future responses will apply this response directly.

A series of tests were conducted to observe the limitations of this technique [9]. The tests varied the

number of target scenarios that the system had to deal with (100-200), the number of features (up to 20),

and the number of entries in the valid mappings set (3, 5, and 7). Let us focus on the comparison of two

of the results obtained. Figures 3 and 4, show that the learning system had more difficulty in dealing with

increases in the number of entries in the valid mappings set than with increases in the number of target

scenarios. Therefore, it was concluded that the learning technique would benefit most by reducing the

number of times that a random selection must be made from the valid mappings set.

A variation of the technique was devised where the system generalizes the response given by the

Modality Selector. Instead of requiring this knowledge source to exactly match the current scenario with a

prior scenario for which a correct response was given, the Modality Selector matches the current scenario

to any prior scenario that showed a single difference in the feature values with the current scenario. The

improvement in the learning technique is showed in Figure 5. Using this result, an extension to the

original technique was developed that avoided making random choices as long as at least one feature

value from the current scenario could be matched to a prior, correct, scenario.

Discussion

Recent years have seen a marked interest in intelligent interfaces on the part of researchers. However,

these interfaces continue to fail to materialize as working systems. It is the author’s point of view, that full-

blown intelligent interfaces are not viable at this time. Instead, what we will be seeing more and more is

the use of artificial intelligence techniques to aid in the completion of very specific tasks in already

available interfaces. In addition, the dynamic nature of the human-computer interaction process



determines that it is tremendously difficult to anticipate the needs and requirements of a single user

performing a variety of tasks, let alone doing so for a group of users. Therefore, more of the interface

decision process must be switched to the interface itself in the form of self-adaptation. There are several

examples of the use of self-adaptation to aid in specific interface tasks [3,5]. The challenge in self-

adaptive interfaces is to find appropriate learning strategies and techniques that produce interfaces that

give the user a feeling of control of the interaction process, do not interfere with the completion of the

user’s task, and present a stable interaction environment to the user.

L-CID allows interface developers the luxury of experimenting with learning techniques for specific tasks

without having to make early commitments in their designs that can later on prove costly. This ability

should encourage developers to consider artificial-intelligence solutions to some interface problems, and

may increase the rate at which these systems are being produced. On the flip side, L-CID is a model

rather than a tool, therefore, its use requires a deep understanding of the conceptual model on which it is

based. Regardless, given the increased availability of more powerful and versatile interfaces that can

communicate in various media, it can intuitively be seen that self-adaptation is a clear candidate to

produce the interface of the future: designed for a general group of users, but completely adaptable to the

actual users who utilize it.
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