
Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Model-Based Paradigm:
Topics

l A New Paradigm for Interface Development

» Shortcomings of current interface development tools

» Model-based user interface development

» Success stories

Current Tools [Myers 92b]

l Interface builders
» NeXT IB, UIM/X, DevGuide, Prototyper, XDesigner,

WindowsMAKER

l UIMSs
» OpenDialogue

l Toolkit libraries
» Macintosh Toolbox, Motif and X lib

l Design exploration tools
» Macromind Director, Hypercard, Visual Basic

Tool Evaluation Criteria

l Ease of use
» Ease of learning and using tool to develop interfaces

l Class of interface designs supported
» Aspects of interface development targeted

l Lifecycle support
» Requirements analysis, design, implementation, maintenance

l Performance
» Performance of applications constructed with the tools

Tool Evaluation Summary Table

Ease of Use Classes of Designs
Supported Not Supported

Lifecycle
Support

Performance

Interface
Builders

Excellent for
static facets.
Poor for
dynamic ones

Menus, buttons,
sliders,
etc.

Dynamic aspects Detailed
design,
implementation

Good

UIMSs Fair Dialogue control Everything
doable but hard
to do

Implementation Moderate

Toolkit
Libraries

Poor Everything doable, but hard to do Implementation Excellent

Design
Exploration
Tools

Excellent Presentation,
limited behavior

Complex
behaviors

Early and
detailed design

Poor

Interface Builders:
What They Can Do

l Place building blocks

» Predefined set only

l Define layout

l Set characteristics

» Font

» Color

» etc.

l Connect to application

l Test behavior

MenusMenus

ButtonsButtons

SlidersSliders

LabelsLabels

Interface Builders:
How They Do It (XDesigner)

Palette of
building blocks

Palette of
building blocks

Widget TreeWidget Tree

Interface BuilderInterface Builder

ExampleExample

Interface Builder Limitations
Example

Desired Interface: Project Planning (Auto PLAN II)

Interface Builder:
Partial Solutions

l Table with dynamic data
l Gantt chart
l Direct manipulation

Desired Interface Interface Builder Solution

l Menus
l Palette (icons)
l Scrollbars

Interface Builders:
Partial Solutions

Interface builders
 cannot build

 their own
interface

Interface Builders:
Sources of Limitations

l No support for applications involving

» Data with complex structures

» Heterogeneous data

» Variable amounts of data

» Time-varying data

l What You See Is All You Get

Macromind Director:
Only a Design Tool

Moving a movie while zooming it up or down

MovieMovie

Strengths Weakness

l Rough sketches
» Avoid discussing details
» Focus on functionality

l Animation
l Easy to produce

l Just a mockup
» No implementation

Interface
sketch

Interface
sketch

Time

[Wong 92]

Summary of Shortcomings of
Current Technology

l Interface development is a complex process
» Tools only help with isolated portions of that process

l Interface development is expensive
» All windows painstakingly designed by humans

l Poor lifecycle support
» Changes difficult to propagate

» No tools address both design and implementation

l Poor support for portability & customization

A New Paradigm:
Model-Based Interface Development

l Idea:
» To use a declarative interface model to drive

development

l Goals:
» To provide comprehensive development environments

(i.e., design and implementation phases)

» To deliver robust lifecycle support

» To improve portability of interfaces

» To integrate usability studies with interface development

Model-Based Approach

Model

Editors

Critics

Design
Exploration

Automatic
Design

Design
Assistants

Interface
1

Interface
n

Tools cooperate
via model

Tools cooperate
via model

Interfaces generated from
model for different platforms

Interfaces generated from
model for different platforms

Model-Based Approach

Model

Editors

Critics

Design
Exploration

Automatic
Design

Design
Assistants

Interface
1

Interface
n

Supports
•Full lifecycle

Supports
•Full lifecycle

Model
•Declarative
•Abstraction levels
•Editable
•Analyzable

Model
•Declarative
•Abstraction levels
•Editable
•Analyzable

Model Definition

l Webster’s definition of model
» “One who is employed to display clothes or other

merchandise”
» “A set of plans for a building”
» “A system of postulates, data and inferences presented

as mathematical description of an entity or state of
affairs”

Interface model
A set of plans for a user interface

A system of postulates, data and inferences presented
as a declarative description of a user interface

Interface model
A set of plans for a user interface

A system of postulates, data and inferences presented
as a declarative description of a user interface

What Is in a Model

l Tasks
» Tasks users are expected to perform using an application

l Application
» Objects and commands an application provides

l Presentation and behavior
» Screen appearance and input responses

l Platform characteristics
» I/O devices available, device characteristics

l Workplace characteristics
» Ambience noise, organizational chart, stress level

l User preferences

Why Models Help

l Single repository for interface specification

» Supports tool integration

l Declarative representation

» Supports automated analysis

» Facilitates understanding of designs

l Multiple levels of abstraction

» Support smarter tools

» Provide leeway for interface reconfiguration

Success Stories (1)

l Prototyping from partial specifications
» Humanoid [Szekely 92, Szekely 93]

l Support conceptual design
» Humanoid [Luo 93]

l Automated interface generation
» Mecano [Puerta 94], UIDE/DON [Kim 90], GENIUS [Janssen 93]

l Automated design critics
» UIDE [Braudes 90, Foley 91, Byrne 94]

Success Stories (2)

l Support for reconfigurable interfaces
» ITS [Gould 92, Wiecha 90]

l Context-sensitive presentations
» Humanoid [Szekely 90, Szekely 92]

l Animated guidance and tutorials
» UIDE/Cartoonist [Sukaviriya 90], [Moore 90]

l Hypertext “balloon” help
» Humanoid/H3 [Moriyon 94]

Summary
Model-Based Paradigm

l Addresses limitations of current commercial
technology

l Enables comprehensive user interface
development environment

l Mechanizes user interface theories

Blank Page

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Case Studies: Objectives

l Highlights of system

l Target interfaces

l Model components

l Architecture

l Examples

l Benefits and shortcomings

Case Study: UIDE

l User Interface Design Environment [Foley 88]

l Software environment supporting all facets of
user interface development

» Designer support with design-time tools

» End-user support with run-time tools

l Interfaces are designed and run using a
declarative specification of the interface

l Target interfaces:
» Small-scale prototypes

UIDE Target Interfaces

Digital Circuit Layout EditorDigital Circuit Layout Editor

UIDE Paradigm

Models define
actions and
how they are
applied to data
and interface
objects

Models define
actions and
how they are
applied to data
and interface
objects

Application
Model

Interface
Model

Data
Objects

Interface
Actions

User
Actions

Interface
Objects

Interaction
Techniques

UIDE Model Components (1)

l The application model defines declaratively
the allowed user actions

l Each user action may affect one or more of
the data objects defined in the application’s
data model (e.g., a string constant)

Action Create-NAND-gate
{

Parameter object : NAND
Parameter location : Position
Pre-condition : "exist(x,DESIGN)"
Post-condition : "exist(object,NAND)"

}

UIDE Model Components (2)

l The interface model defines declaratively the
interface behavior that accomplishes the
allowed user actions

l Each interface action is carried out by
interface objects (e.g., a text field) through
appropriate interaction techniques

l End users access each data object through
one or more interface objects (e.g., a text field
for a string constant)

UIDE Model Components (3)

Interface
action

Interface
action

Interface
object

Interface
object

Action select-graphical-object
{

Parameter graphicalObj: PresentationObject
Parameter applicationObj: ApplicationObject
Pre-condition:

"exist(graphicalObj, PRES-OBJ)&
status(graphicalObj, VISIBLE)"

Post-condition:
"status(graphicalObj, HIGHLIGHTED)"

}

Class Button {
name : string
location : position
parent : window
applicable actions : selectCommand

}

UIDE Architecture

Run-time system
transforms
declarative
specification into
running interface

Run-time system
transforms
declarative
specification into
running interface

Design tools allow
model editing and
refinement

Design tools allow
model editing and
refinement

Run-time tools
provide user
services

Run-time tools
provide user
services

Building Interfaces with UIDE:
Design-Time Assistance

Application
Model

Interface
Model

Data
Objects

Interface
Actions

User
Actions

Interface
Objects

Interaction
Techniques

Editors

Editors

Pre-conditions
Post-conditions
Transformations

Static
layout
generator

UIDE: Automatic Layout
Generation

Data
Objects

Data-
Interface
Mapping

Tool

Static
Interface
Layout

Interface
Objects

Layout
Algorithm

Data objects are
assigned
interface objects
automatically
according to
their type

Data objects are
assigned
interface objects
automatically
according to
their type

SAMPLE UIDE DATA-INTERFACE MAPPINGS
Data Object Interface Object
Text String Text Field

Boolean Check Box
Integer Number Field

[de Baar 92]

UIDE:
Specifying Interface Behavior (1)

l Behavior specificationActions specify what to do
» Actions are applied to interface objects
» Pre-conditions must be true for actions to be applied
» Post-conditions are true after actions are applied
» Constraints limit the ability of objects to execute actions

Action select-graphical-object
{

Parameter graphicalObj: PresentationObject
Parameter applicationObj: ApplicationObject
Pre-condition:

"exist(graphicalObj, PRES-OBJ)&
status(graphicalObj, VISIBLE)"

Post-condition:
"status(graphicalObj, HIGHLIGHTED)"

}

UIDE:
Specifying Interface Behavior (2)

l Interaction techniques realize actions
» Example: select-graphical-object by mouse click

l Transformations provide packaged behavior
» A transformation is an algorithm that can be applied

automatically to an object when requested by a designer

» Transformations are defined in terms of actions, pre-

conditions, and post-conditions

» Transformations constitute a library of high-level, generic

design paradigms

Using UIDE Interfaces:
Run-Time Assistance

Help system
monitors the state
of the interface
and builds and
animates help
screens by
examining the
interface model

Help system
monitors the state
of the interface
and builds and
animates help
screens by
examining the
interface model

UIDE: Help Animation
(Create NAND gate sequence)

1. Click on NAND gate icon1. Click on NAND gate icon

2. Move mouse to
layout pad and
click on desired
position

2. Move mouse to
layout pad and
click on desired
position

3. NAND gate is created3. NAND gate is created

UIDE: Review

l Benefits

» Automatic interface sequencing control

» Automatic generation of animated help

» Automatic dialogue box generation

l Shortcomings

» Ease of use

» Scale up to large applications

Case Study: Mecano [Puerta 94]

l Environment to automate interface design

» Tools generate layout and behavior specifications

» Designers custom-tailor generated designs

l Interface design process involves

» Developer specifies application domain model

» Tools generate automatically interface specifications

l Target interfaces:

» Form and graph-based interfaces

Mecano Target Interfaces (1)

Entry forms for
medical treatment
specification
interface (over 60
windows total)

Entry forms for
medical treatment
specification
interface (over 60
windows total)

Mecano Target Interfaces (2)

l Graphical editors are domain-specific
l Users can only connect graphical objects as

allowed in the domain

Graphical editor for
specification of
medical treatments

Graphical editor for
specification of
medical treatments

Mecano Paradigm

Domain model provides
information needed to
build an application-
specific design from the
generic interface model

Domain model provides
information needed to
build an application-
specific design from the
generic interface model

Domain
Model

Generic
Interface

Model

Automatic
Designer

Application-
Specific
Interface
Design

Domain Models
Domain model
Declarative representation of

» objects in a domain
» their relationships

Domain model
Declarative representation of

» objects in a domain
» their relationships

Clinical trial
domain model

Clinical trial
domain model

Domain Models vs. Data Models

l Domain models extend data models
l Relationships among objects are made

explicit and declarative
l Data models are useful only for automatic

layout generation
l Domain models are useful for automatic

layout and behavior generation

Domain
Model

Data
Model

Mecano Architecture

Design tools
operate on
declarative models

Design tools
operate on
declarative models

Run-time system
executes
application-specific
interface model and
produces interface

Run-time system
executes
application-specific
interface model and
produces interface

Designing Interfaces with
Mecano

Build
Domain
Model

Generate
Layout

Generate
High-Level
Dialogue

Custom-
Tailor

Design

Generate
Low-Level
Dialogue

Mecano:
Building Domain Models

Designers employ
a model browser
editor to build and
review models

Designers employ
a model browser
editor to build and
review models

Mecano:
Generating Dialogue [Eriksson 94]

l Relationships in the domain model determine dialogue

l High-level dialogue
» Display decomposition into windows

» Mapping of data objects to interface components

» Window navigation

» Example: using IS-A relationships to determine window navigation

l Low-level dialogue
» Side effects of user actions

» Domain-specific constraints on user input

» Example: using PART-OF relationships to determine graphical object
connectivity

Mecano Example:
Dialogue Generation

Interface objects from
protocol class slots

Window for protocol
classDisplay

graphical
editor

Display
window

Disable
editing

Update after user input

High-level dialogue

Low-level dialogue

Mecano Example: Domain-Specific
Graphical Editor Generation

(slot algorithm
(type :procedure)
(allowed-classes :xrt :chemotherapy :drug))

(slot algorithm
(type :procedure)
(allowed-classes :xrt :chemotherapy :drug))

Automatic designer
maps type
“procedure” to a
graphical editor

Automatic designer
maps type
“procedure” to a
graphical editor

Automatic designer
creates canonical
graphical objects
for allowed classes
and defines
corresponding
push buttons

Automatic designer
creates canonical
graphical objects
for allowed classes
and defines
corresponding
push buttons

Mecano Review

l Benefits

» Highly automated design environment

» Allows automatic generation of dynamic behavior

» Couples application design and interface design

» Supports development of large-scale interfaces as well as prototypes

l Shortcomings

» Automatic nature reduces design space

» Lacks a task model component (under development)

» Dynamic behavior generation is limited to certain types

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Architectures for Model-Based
Interface Development

l Basic architecture

l Model contents

l Full architecture

Model-Based Approach

Model

Editors

Critics

Design
Exploration

Automatic
Design

Design
Assistants

Interface
1

Interface
n

Tools cooperate
via model

Tools cooperate
via model

Interfaces generated from
model for different platforms

Interfaces generated from
model for different platforms

Model

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Task Model

l Specification of tasks users perform
» Goals: specifies when a desired state is met
» Methods: procedures to achieve a goal

– Atomic methods achieve goals in one step
– Composite methods decompose goals into subgoals

l Task models result from task analyses
» GOMS [Card 83], TKS [Johnson 94]

l Task models research
» ADEPT [Johnson 94]
» GOMS [Kieras 85] [John 92]

Task Model Contents
Example

Protect Ship

Detect Threat Destroy Threat

Load Cannon

Aim Cannon

Fire Cannon

Why Model Tasks?

l User centered design:
» understand what users want to do

» understand how they do it

l Benefits of task models
» Enable automatic help generation

– Animations showing how to complete tasks [Sukaviriya 90]

» Enable automated design critics

– Execution and learning time estimates

» Lay foundation for design of an application

Application Model

l Specification of services applications provide

» Objects: capture state of world entities

» Operations: change the state of objects

l Operations = primitive methods of task model

Application Model Contents

l Objects
» Type
» Slots

l Operations
» Preconditions
» Inputs
» Actions
» Postconditions

Cannon: Device
loaded: Boolean
aim: Coordinate

Load (c: Cannon)
precondition: not (loaded (c))
postcondition: loaded (c)
actions:

c.loaded = true

Fire (c: Cannon)
.....

Dialogue Model

l Specification of human-computer conversation

l Specification of when computer can
» Query user

» Present information

l Specification of when user can
» Invoke commands

» Select or specify inputs

l Example: Load, Fire Cannon
» “Fire” button disabled until “Load” button is pressed

Presentation Model

l Specification of object & operation appearance

» Hierarchical decomposition of display into components

» Presentation medium of components

– Screen, speech output, sound, ...

» Component attributes

– Type (text, icon, graphic, etc), color, size, font, etc.

» Layout of components

– Row, column, graph, table, application-specific

Presentation Model Contents

Window

Button-1
type: Button
label: “Load”
font: Times

Button-2
type: Button
label: “Fire”
font: Times

Gauge-1
type: Gauge
min: 0
max: 360

Column
separation: 10
alignment: left

Row
separation: 20
alignment: center

Presentation/Application Model
Relationship

Cannon: Device

Load (c: Cannon) Fire (c: Cannon)

Window

Button-1
type: Button
label: “Load”
font: Times

Button-2
type: Button
label: “Fire”
font: Times

Gauge-1
type: Gauge
min: 0
max: 360

Column
separation: 10
alignment: left

Row
separation: 20
alignment: center

Aim (c: Cannon,
 a: Coordinate)

Behavior Model

l Specification of input behavior
» Presentation components where applicable
» Behavior medium/device

– Keyboard, mouse, pen, voice, ...
» Behavior attributes

– Mouse: which button, gesture kind (click, drag), ...
– Keyboard: which key, modifiers
– ...

» Behavior actions
– Invoke operation
– Set operation input
– ...

Button-Behavior-1
device: Mouse
button: Left
operates-on: Button-1
action: invoke (Load)

Button-Behavior-1
device: Mouse
button: Left
operates-on: Button-1
action: invoke (Load)

Behavior/Presentation Model
Relationship

Button-Behavior-2
device: Mouse
button: Left
operates-on: Button-2
action: invoke (Fire)

Window

Button-1
type: Button
label: “Load”
font: Times

Button-2
type: Button
label: “Fire”
font: Times

Gauge-1
type: Gauge
min: 0
max: 360

Column
separation: 10
alignment: left

Row
separation: 20
alignment: center

Platform

l Specification of platform characteristics
» Input devices

– Mouse: No. buttons, speed, ...
– Keyboard: keys, modifiers, function keys, ...
– Pen: buttons, pressure, ...
– Glove: degrees of freedom, ...

» Output devices
– Screen: resolution, colors, speed
– Speaker: quality, stereo

» CPU
– Speed, memory & disk size

» Networking
– Latency, bandwidth

User Model

l Specification of user characteristics
» task experience
» application experience
» system experience
» use of other systems
» typing skills
» motivation
» computer literacy
» frequency of use
»

[Wilson 93]

Why Model Users?

l Reconfigure presentation & behavior to user
» ADEPT [Johnson 93]

l Provide appropriate level of help
» [Moore 90]

l Actively tutor user during interaction
» Guidon [Clancey 79]

» West [Burton 81]

» Sophie [Brown 75]

Workplace Model

l Specification of workplace characteristics
» system use: mandatory, optional
» turnover rate: high, moderate, low
» organization role: manager, clerical
» Environment factors

– Noise level
– Light level

» Cultural characteristics
– Meaning of colors, words, icons

l Example
» CPU Connectix Powerbook Utilities

– Settings for home, office, travel

Model Components
Summary

Model components:
• define a vocabulary for specifying arbitrary interfaces
• provide a reusable framework for developing interfaces

Model components:
• define a vocabulary for specifying arbitrary interfaces
• provide a reusable framework for developing interfaces

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Development Architecture:
Model Refinement

Editors

Critics

Design
Exploration

Automatic
Design

Design
Assistants

Development tools
cooperate via model

Development tools
cooperate via model

Development tools
refine model

Development tools
refine model

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Refinements
Generic

Model Refinement Example

Button-Behavior-1
device: Mouse
button: Left
operates-on: Button-1
action: invoke (Load)

Button-Behavior-2
device: Mouse
button: Left
operates-on: Button-2
action: invoke (Fire)

Window

Button-1
type: Button
label: “Load”
font: Times

Button-2
type: Button
label: “Fire”
font: Times

Gauge-1
type: Gauge
min: 0
max: 360

Column
separation: 10
alignment: left

Row
separation: 20
alignment: center

Cannon: Device

Load (c: Cannon)

Fire (c: Cannon)

Aim (c: Cannon,
 a: Coordinate)

Workplace

User
Platform

Behavior

Dialogue

Tasks
Application

Presentation

Application Architecture

State

Model

Generated
InterfaceRun-Time

System

State stores:
l object instances
l instances of presentation components
l dialogue state
l current user characteristics
l interaction history

Application Architecture
Example

State

Model

Run-Time
System

Ship protection system state
l state of cannon

» loaded, aim

l state of buttons and type-ins
» dimmed, value, location, size

l state of behaviors
» enabled, running

Application Architecture With
Run-Time Tools

Run-time tools
l Provide services to users
l Use model to analyze state
l Change state

State

Model

Interface

Animations

Run-Time
System

Animated
Help

Balloon
Help

Help

Full Development
Architecture

l Iterative model refinement assisted with tools
l Immediate feedback after model changes
l Services automatically reconfigured when model is refined

State

Model

Interface

Animations

Run-Time
System

Animated
Help

Balloon
Help

Help

Editors

Critics

Design
Exploration

Automatic
Design

Design
Assistants

Demonstrational
Model Specification

Summary
Architecture

l Model specifies all aspects of interfaces
l Reusable, extensible & portable models
l Modeling tools refine models
l Run-time system generates interface
l Run-time services based on model & state

Framework for comprehensive
interface execution and

development environments

Framework for comprehensive
interface execution and

development environments

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Blank Page

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Humanoid: User Interface
Development Environment

l Supports early conceptual design on line

l Supports refinement into finished products

l Assists with design exploration

l Facilitates construction of all interface features

Humanoid Architecture

Humanoid’s architecture vs. Generic architecture

State

Model

Interface

Animations

Run-Time
System

Animated
Help

Balloon
Help

Help

Editors

Critics

Design
Exploration

Automatic
Design

Design
Assistants

Demonstrational
Model Specification

Model

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Sequencing

Side-Effects

Example: TreeViz
Visualization of Hierarchies

l Column/row space partitioning
l Rectangle size ~ node value
l Recursive: all tree levels

40

5

10

25
15

5
40

5

10

25
15

5

40

5

10

25
15

5

1st Step 2nd Step

3rd Step

TreeViz
Implemented in Humanoid

Name of root recordName of root record

Offset between rectanglesOffset between rectangles

l Hierarchy
» Tree of subroutine calls

l Record values
» Subroutine execution time

l Color
» Subsystem where

subroutine is defined

CommandsCommands

Record valuesRecord values

Modeling Language Features

l Abstraction levels
» Support design tools

l Constraints
» Support automatic screen update
» Support enabling/disabling behaviors

l Iteration
» Supports variable amounts of data

l Conditionals
» Support heterogeneous data
» Support context-sensitive displays

Behavior

Dialogue

Application

Presentation

Sequencing

Side-Effects

Application Semantics Model

l Global inputs
» Value
» Type
» Validation predicate

l Commands
» Action
» Inputs
» Preconditions
» Exceptions

l Command and input groups

Behavior

Dialogue

Application

Presentation

Sequencing

Side-Effects

Application Model: TreeViz

TreeViz

Quit

inputs

commands

inputs

Offset

Root

Current Object

Browse

Object To Browse

Presentation Model

l Templates

» Hierarchical decomposition of display

» Pluggable components

» Replication (iteration)

» Choice based on data properties (conditionals)

Behavior

Dialogue

Application

Presentation

Sequencing

Side-Effects

Presentation Model: TreeViz

Buttons

TreeViz Column

TreeViz Row

Entries

ControlsItems

Label Menu

Border

Border

TreeViz Column

TreeViz Window

Command PanelBodyInput PanelMenu Bar

Generic components

Refinements/Extensions

Legend
Replicated parts

Example Display

Buttons

TreeViz Column

TreeViz Row

Entries

ControlsItems

Label Menu

Border

Border

TreeViz Column

TreeViz Window

Command PanelBodyInput PanelMenu Bar

Presentation Choice: Example

l Decision trees select presentation methods
» Example: selecting dialogue box building blocks

Input

Choice

No Choice

Radio Buttons

Check Boxes

Scrolling Menu

Option Menu

Type In Buffer

Scrolling Type In Buffer

Many Alternatives

Few Alternatives

has alternatives

no alternatives

alternatives > 10

alternatives <= 10

Single Choice

Multiple Choice

minimize space = true

Check Box

chars > 50

max <= 1

max > 1

alternatives = 2

Behavior Model

l Interactors
» Start and stop events

» Start and running region

– Example: all instances of a template

» Start, running and stop action

– Examples:
l set input to value

l invoke command

» Active, inactive

Behavior

Dialogue

Application

Presentation

Sequencing

Side-Effects

Behavior Model: TreeViz

Buttons

TreeViz Column

TreeViz Row

Entries

ControlsIte ms

La bel Menu

Border

Borde r

Tr eeViz Column

TreeViz Window

Command Pa nelBodyInput PanelMenu Bar

Move Mouse

Action:
Set Input Value

Start Region

Running Region

Left Down

Left Up

Start Event

Stop Event

TreeViz

Quit

inputs

commands
inputs

Offset

Root

Current Object

Browse

Objec t To Browse

Application Model

Behavior Model

Presentation Model

Sequencing & Side-Effects
Model

l Sequencing specified implicitly
» Derived from application model

– Invalid preconditions --> command disabled
– Invalid inputs --> E.g., “OK” button disabled

» Specified as attributes of command and input groups
– E.g., only one command in group active
– E.g., inputs in group prompted for in sequence

l Access to lower level status information
» Command and input states
» Demons

– E.g., No longer-active, became-active,
 active-to-running

Behavior

Dialogue

Application

Presentation

Sequencing

Side-Effects

Modeling Environment

l All features of designs visible & changeable

l Example interface updated when model updated

l All views of designs are linked together

l Spreadsheet paradigm for entering constraints

Design Tool:
Model Editor and Tester

Presentation Model EditorPresentation Model Editor

Example InterfaceExample Interface

Hierarchical
decomposition

Hierarchical
decomposition

Attributes of
selected slement

Attributes of
selected slement

“Spreadsheet”
constraint editor

“Spreadsheet”
constraint editor

Example ManagerExample Manager

Prototyping from Partial Specs

Partial SpecificationPartial Specification

Variable amounts
of data

Variable amounts
of data Custom layoutsCustom layouts

Recursive
presentation

Recursive
presentation

Context-sensitive
presentation

Context-sensitive
presentation

Complex
structured

data

Complex
structured

data

Design Tool:
Design Assistants

l Agenda of tasks
l What has been done in design
l Routine task automation
l Non-routine tasks
l Methods to implement goals
l Set up modeling tools

l Agenda of tasks
l What has been done in design
l Routine task automation
l Non-routine tasks
l Methods to implement goals
l Set up modeling tools

AgendaAgenda
ToolsTools

Run-Time Tool:
Hypertext “Balloon” Help

Region selected
for help

Region selected
for help LinksLinks

MessagesMessages

HelpHelp
ApplicationApplication

l Default help automatically generated from model
l Rule-based help generation
l Levels of help message customization

» Editing examples of messages, changing rule conditions, defining new rules

Applications: SHELTER
Knowledge-Base Development

GraphsGraphs

Boxes & Arrows
Editors

Boxes & Arrows
Editors

Specialized
Editors

Specialized
Editors

Applications: DRAMA
Logistics Management

75+ Different Windows
13 Window Families

75+ Different Windows
13 Window Families

Humanoid: Review

l Benefits
» Supports wide range of interfaces

» Complex interfaces developed without programming

» Immediate visualization of consequences of model changes

» Allows delay design commitments

» Framework for incorporating support tools

l Shortcomings
» Interactive development environment is hard to use

» Performance

ITS: A Tool for Rapidly Developing
Interactive Applications

l Reconfigurable interfaces
» Different interaction devices, users, countries

l Direct involvement by different specialists
» Domain experts, graphic artists, system and toolkit programmers

l Four layer architecture separates concerns

l Production quality tool

l Widely used applications
» Information kiosks (multimedia)

» Business applications

ITS
4 Layer Architecture

l Actions
» Semantic routines

l Dialog content
» Application objects
» Contents of display

l Rule-based style
» Rules for presenting

objects on the screen

l Display objects
» Primitive toolkit building

blocks

Model in generic
Architecture

Actions

Rule-based
style

Display objects

Dialog
content

Model in ITS
Architecture

.

Workplace
UserPlatform

Behavior

Dialogue

Tasks
Application

Presentation

ITS
Architecture

l Model elements specified by different specialists
l Data pool: shared data between application and interface
l Widget trees: representation of display
l On the fly generation of interfaces based on model and data pool

Interface
Run-Time
System

Actions

Dialog
content

Rule-based
style

Display objects

Data Pool

Toolkit programmer

Graphic designerApplication expert

System
programmer

Widget Trees

Model

State

Action Layer

l Procedures that perform computation
l Communicate with interface by

» Storing values in data pool
» Many dialogue objects can refer to data pool elements
» Notification mechanism to trigger display updates

l Run-time system calls actions
» In response to input events

Dialog
content style

Display objectsActions
System

programmer

Dialog Content
Application Model

l Declaration of structure of application data
» Forms: set of fields (a record)
» Lists: a set of forms

– Form fields can contain lists

l Independent of display information
» Views can show only subset of data
» Multiple views on same data

Rule-based
style

Display objectsActions

Dialog
content Application expert

Dialog Content (Application Model)
Example

Data definition of airline reservation system
list listname = flights, numrecords = 10

field destination, rangename = cities, size = 20
field departure_time, size = 10
field departure_date, size = 20
field airline, rangename = airlines, size = 20
field number_stops, size = 5

Legend: list: declaration of a list
listname: name of the list
numrecords: number of records in list
field: name of field in record
rangename: type of value stored in field
size: estimate of number of characterRule-based

style
Display objectsActions

Dialog
content Application expert

Dialog Content
Dialog/Presentation Model

l Frames
» Corresponds to a window or region of the display
» Definition of data to be displayed
» Does not define the appearance of the display

l Dialogue control
» Defines when frames are shown on the screen

– Frame “activation”

Rule-based
style

Display objectsActions

Dialog
content Application expert

Dialog Content
(Dialog/Presentation Model) Example

list listname = flights, numrecords = 10
field destination, rangename = cities, size = 20
field departure_time, size = 10
field departure_date, size = 20
field airline, rangename = airlines, size = 20

Rule-based
style

Display objectsActions

Dialog
content

Application expert

frame id = check_today, action = getlist, listname = flights, value = flights.data
list listname = flights, number = 5==lk

list-item field = destination, message = “To”
list-item field = departure_time, message = “Departure”
list-item field = departure_date, size = 20
list-item field = airline, message = “Carrier”

frame message = “To search for selected flights”
... Frame definitionFrame definition

Generated displayGenerated display

Data definitionData definition

5 Elements shown

Rule-Based Style
Presentation & Behavior Model

l Refers to both input and output
l Style in the small and in the large
l Applies to more than one application

Dialog
content

Display objectsActions

Rule-based
style Graphic designer

Style
Coordinated set of decisions
on appearance and behavior

used in a family of applications

Style
Coordinated set of decisions
on appearance and behavior

used in a family of applications

Display Generation

Choice

Ci-1 Ci-2 Ci-3

Vertical Group
(Choice)

Title Horizontal Group

Text
(Ci-1)

Text
(Ci-2)

Text
(Ci-3)

Style Rules

Dialogue Content

Widget Tree

Transform application
data into display trees

Dialog
content

Display objectsActions

Rule-based
style Graphic designer

Style Rules

Style rules determine display format

l When rule is executed
» Names of dialogue frames
» Fields in dialogue frames
» Field attributes

– rangename
– size

» No. of choices in choice fields

l Formatting instructions
» Create display elements
» Set attributes of display elements
» Control execution of nested rules
» Group display elements together

Conditions Results

Dialog
content

Display objectsActions

Rule-based
style Graphic designer

Style Rules:
Example

Choice

Ci-1 Ci-2 Ci-3

Vertical Group
(Choice)

Title Horizontal Group

Text
(Ci-1)

Text
(Ci-2)

Text
(Ci-3)

when type = choice
build

unit type = Vertical-Group
unit type = Title
unit type = Horizontal-Group

unit type = message, replicate = all

When asked to display a set of choices

then build a

a vertical arrangement of

a title

and a horizontal arrangement

of a message for each choice

Rule for displaying a set
of choices as a menu with

a title

Dialog
content

Display objectsActions

Rule-based
style Graphic designer

Display Objects

l Implementation of the display building blocks
» Request screen space from parent
» Respond to space allocation
» Paint object on the screen
» Respond to input events

– activate frames
– select object
– execute actions

Dialog
content

Actions

Rule-based
style

Display objects

Toolkit programmer

Applications
1992 EXPO in Seville

l Visitor information system
» Maps and directions to pavillions
» Person to person and group electronic mail
» Automated restaurant reservations
» Public opinion polling
» Finger painting and picture taking

l Used by millions of people for several months
» Network of IBM 486 computers
» Touch screen interface

ITS: Information Kiosk
Expo 92, Seville, Spain

Hot spotsHot spots

MapsMaps Menu to
other services

Menu to
other services

Multi-languageMulti-language

Touch-sensitive displayTouch-sensitive display

ITS: Information Kiosk
Expo 92, Seville, Spain

Electronic MailElectronic Mail

Where:
A picture of user’s location

Where:
A picture of user’s location

MultimediaMultimedia

ITS:
Review

l Benefits
» Clean separation of design concerns

– Allow involvement by different specialists

» Easy to tailor interfaces to multiple platforms

» Production-quality system

l Shortcomings
» Limited set of tools

» Relatively long learning curve

Blank Page

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Survey of Model-Based Tools

l Current model-based work

l Comparison along key dimensions

» Model components covered

» Range of design and run-time tools

» Practicality

Current Model-Based Work

Development Environments

l UIDE
l Mecano
l ITS
l Humanoid

l ADEPT
l GENIUS
l Trident

Notations
l EDICM
l E-R Models

Usability
l GOMS

ADEPT [Johnson 93]

l Development environment for interface prototyping

l User-Task centered design

» Task model evolves throughout design

l Multi-step refinement process
» Task model

» Abstract interface model

» Concrete interface model

» Executable code

l Platform independence

ADEPT Model & Processes

Initial Task
Model User Model

Designed Task
Model Abstract Interface

Model

Resultant Task
Model

Concrete Interface
Model

User Interface

Task Analysis User Group
Analysis

Design Design
Principles

Design
Principles

Consequences
of Design

Task Evolution

Refinement

Execution

ADEPT Example:
Task Model

Task model for a
radiology workstation
application interface

Task model for a
radiology workstation
application interface

Designers build tasks
models with a graphical
editor

Designers build tasks
models with a graphical
editor

ADEPT Example :
Generated Interface

Entry form for radiology
workstation application

Entry form for radiology
workstation application

GENIUS [Weisbecker 93]

l Development environment for database applications

l Integrates
» Software engineering techniques
» User interface design

l Automatic generation of interfaces
» Layout from E-R models

» Dialog specifications from Petri nets

GENIUS Example:
The E-R Model

Designers build the
application’s data
models with a
graphical editor

Designers build the
application’s data
models with a
graphical editor

GENIUS Example:
The Generated Interface

Automatic designer
produces static layout
from E-R model

Automatic designer
produces static layout
from E-R model

GENIUS Example:
Dialog Specification

Customer

Initial
Window

Start

Search
Customer

Customer
List

Open
Customer

Customer Open

Open

Search

Cancel

Cancel

Search

Open

Customer New Customer Search

Quit

View / Window

Transition

Double flow relation
(Window remains open)

Single flow relation
(Window / Subdialouge
gets closed)

Complex Place
(Subdialogue)

Optional flow relation
(Window does not have
to be open)

Designers specify
dynamic behavior
through “Dialog
Nets” (Petri Nets)

Designers specify
dynamic behavior
through “Dialog
Nets” (Petri Nets)

TRIDENT: Rapid Development of
Business-Oriented Applications

l Separation of concerns
» Task analysis
» Application functionality
» Dialogue
» Presentation
» Platform dependencies

l Automatic interface generation based on
» Task analysis

– Information flow between tasks
» User interface guidelines

F. Bodart, A.M. Hennebert, J.M. Leheureux, B. Sacre, I. Provot, J. Vanderdonckt
University of Namur, Belgium

[Vanderdonckt 93]

TRIDENT: Architecture
Automatic Interface Generation

Task Model

Application Model

Selection Rules
UI Guidelines

Model Editors

Dialogue Designer

Abstract Interaction Objects
Abstract To Concrete

Mapper

Concrete Interaction Objects
Layout Generator

UIL/Windows
 Objects

Interface Builder

Screen

Developer specifies tasks,
information flow, and model of

application objects & operations

Developer specifies tasks,
information flow, and model of

application objects & operations

TRIDENT automatically
designs high level

dialogue & presentation,
using UI guidelines

TRIDENT automatically
designs high level

dialogue & presentation,
using UI guidelines

Mapping to target toolkit
(e.g. Motif, Windows)

Mapping to target toolkit
(e.g. Motif, Windows)

Final Spec
 touch-up

Final Spec
 touch-up

Interaction
Object Selection

Developer specifies properties
of data and user preferences

Developer specifies properties
of data and user preferences

TRIDENT selects
interaction techniques
using a decision tree

TRIDENT selects
interaction techniques
using a decision tree

TRIDENT: Examples

Customer Support:
3 tasks

Customer Support:
3 tasks

Window design based on info needed
to perform tasks, and task sequencing.

E.g. after finding customer task,
modify address task is possible

Window design based on info needed
to perform tasks, and task sequencing.

E.g. after finding customer task,
modify address task is possible

EDICM [Cockton 93]

l Extended Designer’s Intended Conceptual Model

l A notation for application models
» Object-oriented, framed based, multiple inheritance

» Multiple levels of abstraction

» Extensive command structure

l Model validation
» By reverse-engineering existing interfaces

» By conducting large-scale usability studies

EDICM Example

CLASS FOR a DrawingDocument
 ISA — Document
 INSTANCES — unlimited
 ALIASES
 CurrentDrive is CurrentDrive of AccessibleMacObjectSet of PIHR
 CurrentFolder is CurrentFolder of AccessibleMacObjectSet of PIHR
 OpenFiles is OpenFiles of PIHR
 Status is SaveState of SaveAsController of PIHR
 ATTRIBUTES
 Contents: DisplayTrees/EmptyTree
 Format: (Drawing, Stationary, Pict, Pict2)/Drawing
 FUNCTIONS
 Make Contents for Drawing into <DisplayFile>
 IMPLEMENTATION: DisplayFile <- FileRep(Contents)
 Make Contents for Stationary into <StatDisplayFile>

 IMPLEMENTATION: StatDisplayFile <- StatFileRep(Contents)

Object Class Attributes Commands
Documents name rename&save

format set format
path to move

Folders name rename
path to move
contents add to …

Drives type link to contents
contents name
physical
address

Desktops contents add to …
Contexts current folder

current volume
set current folder
set current volume
change to
desktopeject current
volume

Multiple levels of
abstraction allow multiple
levels of model editing

Multiple levels of
abstraction allow multiple
levels of model editing

E-R Models [Benyon 93]

l E-R models as a notation to support design

» Primarily used to develop task models

l E-R models provide
» Common language for representing and talking about

interfaces

» A mechanism to gain a structured insight into the design
of an interface

l E-R paradigm
» Is limited in expressiveness

» May necessitate extensions to represent complex
designs

Dimensions for Comparing
Tools (1)

l Model expressiveness:
» What aspects of the design can be controlled explicitly

l Roles
» Generation
» Automated analysis

l Level of automation
» Described based on level of the interface model
» Levels

– Task
– Application
– presentation/behavior (what)
– presentation/behavior (how)

l Environment tools
» What kinds of tools are available in that environment

Dimensions for Comparing
Tools (2)

l Maturity of tools
» Scale of applications built
» Performance

l Domain dependencies
» Class of interfaces they can create
» Class of applications

l Platform dependencies
» Machine
» programming language
» window system/toolkit

l Availability
» Cost
» License required
» Not available

Comparison Table
Model
Expressiveness

Model Levels Run-time
Tools

Environment
Tools

Level of
Automation

Maturity Domain
Dependencies

Platform
Dependencies

Availability

ITS Extensive control,
but limited set of
applications

Application,
Presentation,
Behavior,
Dialogue

Generation Text editor Low Very high,
applied
commercially

Mostly business
information
systems,
information
kiosks

IBM-OS/2 None

Mecano Restricted control Application,
Presentation,
Behavior,
Dialogue

Generation Automated
designer
Model editor
Interface
builder

High Medium,
applied
research

Form and
graph-based
interfaces

NeXT Step Available to
researchers
No
documentation

UIDE High for input
Low for output

Application,
Presentation,
Behavior,
Dialogue

Generation
Animated help

Design critics
Automatic
dialogue box
generator
Model editor

Low, high for
dialogue
boxes

Medium, but
only small
scale
applications

Unknown UNIX, X, C++
UNIX, Lisp for
design critics

Available
No
documentation

Humanoid Extensive control Application
Presentation
Behavior,
Dialogue

Generation
Generation
from partial
models
Balloon help

Model editors
Design
assistant

Low, high for
dialogue
boxes

Medium,
several large
applications

WIMP
interfaces

UNIX, X, Lisp Available to
researchers
No
documentation

ADEPT Moderate control Task,
Application,
Presentation,
Behavior,
Dialogue,
User,
Workplace

Generation Model editors High Medium Form-based
interfaces

Smalltalk Unknown

Trident Extensive control,
but limited set of
applications

Task,
Application,
Presentation,
User,
Workplace

Generation Model editors,
automatic
designer,
interface
builder

High Medium,
several large
applications

Mostly business
information
systems

UNIX, WindowsUnknown

GENIUS Restricted to
expressiveness
of E-R notation

Application,
Presentation,
Dialogue

Generation Layout
generator,
Dialog net
editor

High for
layout,
moderate for
behavior

Research Database
applications

SUN/UNIX Unknown

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies
l Survey of Model-Based Tools
l Conclusions
l Questions

Conclusions

l Advantages

l Disadvantages

l Where will this technology be in 5 years?

l How can I use this technology today?

l Take-home messages

Advantages

l Model allows development of tools for

» faster, cheaper interface development

» more reusable designs

» more portable interfaces

» more principled and consistent interfaces

» interfaces with more services (e.g., usability support)

Disadvantages of Current
Model-Based Systems

l Building models requires effort

» more than just drawing,

» but much less than programming

l Limited control over interface designs

l Efficiency of generic run-time systems

» lower than current application-specific interface code

Where will this technology be in
5 years?

l Better coverage of interface design space
» Richer models, better modeling languages

l Lower model building costs
» Modeling tools, demonstrational approaches

l Reusable generic models available
» Researchers currently merging individual models

l Incorporation of human factors research
» GOMS-based analysis of designs
» Run-time support for usability studies

l Widely available research model-based tools

How can I use this technology
today?

l Model-based systems can generate platform-

independent interface specifications
» An appropriate run-time system must be built for your

platform

l Existing run-time libraries and toolkits can be

incorporated into new model-based

development environments

Take-home messages

l Interface building = Model buildingl Interface building = Model building

l Interface models enable comprehensive
development environments

l Interface models enable comprehensive
development environments

Agenda

l Model-based paradigm
l Case studies: UIDE, Mecano
l Architectures
l Break
l Case studies: Humanoid, ITS
l Survey of Model-Based Tools
l Conclusions
l Questions

Questions

?

