MOBILE: User-Centered Interface Building

Angd R. Puerta, Eric Cheng, Tunhow Ou, Justin Min,
Stanford University
251 Campus Drive — MSOB x215
Stanford, CA 94305-5479 USA
+1 650 723 5294
puerta@smi.stanford.edu — http://www.smi.stanford.edu/projects/mecano

ABSTRACT

Interface builders are popular tools for designing and
developing graphical user interfaces. These tools, however,
are engineering-centered; they operate mainly on windows
and widgets. A typical interface builder does not offer any
specific support for user-centered interface design, a
methodology recognized as critical for effective user
interface design. We present MOBILE (Model-Based
Interface Layout Editor) an interface building tool that
fully supports user-centered design and that guides the
interface building process by using user-task models and a
knowledge base of interface design guidelines. The
approach in MOBILE has the important added benefit of
being useful in both top-down and bottom-up interface
design strategies.

Keywords

M odel-based interface development, task models, interface
builders, user-centered interface design, user interface
development tools.

INTRODUCTION

For a good number of years, interface-building tools have
gained wide acceptance among developers of graphical
user interfaces [3]. Interface builders allow developers to
layout and organize, via direct manipulation, the various
elements of a graphical user interface (GUI). Typicaly,
these tools include code generators that produce the basic
hooks for application developers to write the code to
communicate with the wuser interface. All major
commercial software-development environments currently
available include interface-building tools.

Although efficient at what they do, interface builders
restrict their scope to manipulation of those elements that
make up a GUI, such as windows and widgets. They
support, in essence, an engineering process. An interface

developer working with an interface builder occupies his
or her thoughts with widget selection, layout, and
organizational issues. Any connection between the
operations made through an interface builder and the
requirements of the target users and their tasks must be
maintained in the head of the developer without assistance
from the interface-building tool.

Separately, the user-interface community has come to
accept that one of the best methodologies for user-interface
construction is that of user-centered design [4]. The basis
of this methodology is straightforward: The design of a
user interface should be guided principally by the nature of
the task that the user needs to accomplish. This differs
from so-called engineering-centered approaches where
interface design decisions are made according to the
requirements of the application being built. The benefits of
user-centered design have been clearly demonstrated over
theyears[4].

It is therefore curious that the clearly effective graphical
interface builders do not support the similarly effective
user-centered approach. This opens the question of how
could interface builders be augmented, enhanced, or
modified in order to enable a user-centered approach but
without changing the operations in such a way that the
origina benefits of the tools disappear.

OUR SOLUTION

The approach taken by our group incorporates elements of
user-centered design and of model-based interface
development into the functionality of an interface builder.
From user-centered design we take the idea of building
user-task representations as a guide for interface
development. From model-based interface development [8]
we take the ability to create, edit and refine user-task
models. These models are computational units that can be
exploited by an interface builder. Finally, from interface
builders we take their basic functionality and try to
augment it in very specific ways (using user-task models)
to enable a user-centered process.

The result is a tool called MOBILE (Model-Based

Interface Layout Editor), which enables user-centered
interface building. MOBILE alows developers to

interactively build user interfaces according to a user-task
model. The tool also provides decision-support guidance
thanks to knowledge base of interface design guidelines.
Users of MOBILE can benefit whether they use a top-down
approach (i.e, build a user-task model and then an
interface), or a bottom-up one (i.e., build a user interface
and construct a user-task model that goes along with it).

The rest of the paper is organized as follows. We first
provide some contextual information about model-based
interface development. Then, we describe MOBILE and its
main functional characteristics. We illustrate the use of the
tool via a sample target interface. We proceed by detailing
the decision-support capabilities of MOBILE and by
describing its use in a bottom-up approach. We conclude
by relating our evaluation experiences, the work related to
our approach, and the possible directions of future
research.

MOBI-D

M odel-based interface development [8] is a technology that
embraces the idea of designing and developing user
interfaces by creating interface models. An interface model
is a computational representation of all the relevant aspects
of a user interface. The components of an interface model
include submodels such as user-task models, domain
models, user models, presentation models and dialog
models. Model-based interface development systems are
suites of software tools that allow developers to create and
edit interface models. Many model-based systems aim at
generating significant parts of a user interface given a
partial interface model. Some others aim at interactively
guiding developers in building user interfaces using
interface models [8].

Over the past three years, our group has been developing
MOBI-D (Model Based Interface Designer) [8]. MOBI-D
is a model-based interface development environment that
enables designers and developers to interactively create
user interfaces by defining interfface models. The
environment integrates a variety of tools including model-
editing tools, user-task elicitation tools, and the interface
building tool presented here.

A full description of the model-based interface technology
and development methodology supported by MOBI-D has
been presented elsewhere [8] and it is beyond the scope of
this paper. Some of the other individua tools integrated
into MOBI-D have aso been described in previous
publications [5, 7, 9]. For our purposes, however, we
simply need to note that a component of the interface
models constructed in MOBI-D is a user-task model. This
component is the essential element for the interface-
building tool presented in this paper.

User-Task Models
A user-task model in MOBI-D is a hierarchical
representation of a user’s task. The model decomposes the

user task into subtasks arranged in a tree-like structure.
Attributes can be specified for any task as well as
procedural information (e.g., whether certain sub tasks
must be executed in sequence). Conditions that affect the
execution of a task/subtask can aso be specified in the
model. Domain objects (and their attributes) involved in
the completion of atask can also be defined and associated
with any task. In general, a user-task model is less
complex than a workflow diagram and it can retain a
certain informal level to it without losing its usefulness. In
MOBI-D, user-task models are elicited from domain
experts and then refined by interface developers [9]. Once
created, it is available to any of the other tools in the
environment.

SAMPLE INTERFACE

For illustration purposes of some of the shortcomings of
conventional interface builders, let us consider the partia
interface shown in Figures 1 through 3, which has been
designed using the MOBI-D tools. These figures show
screen snapshots from a military logistics application. This
application allows users to perform typical tasks associated
with requesting and monitoring supplies in a theater of
operations. These tasks include among others: (1) creating
and modifying plans for requisitions of materias, (2)
reviewing potential suppliers for location, available stocks,
and delivery times, (3) requesting supplies and tracking
shipments, and reviewing al current stocks of materials

The application supports users of different ranks. The
dialog and presentation should adapt to the rank of the
user and to the specific task that the user must perform. In
the screen snapshots we can observe the following
situations:

Figure 1 istheinitial screen (after login) for a user of rank
Magjor. Typically, a user of this application needs to see the
authorized stock levels (ASLs) for the current operation
and needs access to a map of the region. The Major can
inspect the ASL s via the 3-D viewer shown on the left. She
can change the data in the viewer to that of a different
location by clicking on the particular location on the map
shown on the right. Each row of bars in the 3-D viewer
(lengthwise) corresponds to a different class of materials
(e.g., subsistence items, ammunition). The user can
quickly see in this viewer if any class has a deficiency in
ASLsin which case, heis authorized to modify it and does
so via the push button shown above the 3-D viewer. We
determined from domain experts and from the construction
of a user-task model for this interface that this screen
fulfills the first activity that a user must perform (overview
of operation) and that the data presented was exactly (not
more or less) what is needed to complete the overview.

Figure 2 shows the initial screen for a user of rank
Sergeant. This user can also inspect ASLs according to

Bud

Pt a0 ego, Colioes
Y e ———
Pt BanD iega, C ol
Guaols L1 Beee, Nevads

Figure 3. Shipment inspection screen for a user of rank Sergeant.

location but since her task is different to that of a Mgor,
the dialog and presentation adapt. The central role of a
Sergeant in this scenario is to carry out the requisition
plans constructed by the major. The Sergeant observes
when supplies are running low and orders new shipments
that conform to the levels set by the Maor. Because a
Sergeant deals only with one specific class of materials
(e.g., subsistence items only), the interface uses a 2-D
viewer for the ASLs. In addition, since a Sergeant is not
authorized to modify ASLs, the pushbutton for access to
the ASL modification screens is disabled. The user-task
information is again derived from the accompanying user-
task model.

Figure 3 shows a shipment inspection screen for a user of
rank Sergeant. Once more, the complete information
needed to perform the inspection task is included in this
screen as dictated by the user-task model. Interestingly,
under certain conditions (e.g., shipment delay) this screen
must be the initial screen for a Sergeant user (as opposed
to that of Figure 2). In such a situation, the decision
context of the Sergeant changes from one of monitoring
(as in Figure 2) to one of repair (eg., request new
shipment, wait, reroute other shipment).

Clearly, a conventiona interface builder can be used to
layout and arrange the elements of any of the screens
discussed above. However, such a tool would offer no help
with managing any of the user-task requirements. Issues
such as how data should be split among the screens, what
widgets correspond to what type of user, and how the
dialog changes according to the task and user
characteristics are well beyond the support of a typica
interface builder. In practice, it may be that such user-task
information is kept in paper documents, or is viewable
through a separate tool, or (worse) it is just in the head of
the designer. The result is bound to be a number of
mismatches between the designed screens and the user-
task specifications. In addition, revisions of the screens or
of the specifications can produce even more pronounced
mismatches, or at the very least a cumbersome
coordination process.

We am for a much higher level of coordination and
support for user-task specifications in the interface
building process. Thisisthe central goal of MOBILE.

MOBILE

MOBILE (Model-Based Interface Layout Editor) is an
interactive software tool for user-centered interface
building. Figure 4 shows the main architectural
components of MOBILE. A task/presentation manager
communicates with an interface model to obtain and
update information related to user-task models and
presentation elements of the target interface. The interface
model is also used by a knowledge base of interface design
guidelines to manage a palette of standard and custom

widgets that interface designers use to select elements for
layout.

The genera philosophy in MOBILE is to guide and
facilitate the interface building process. It is never to
automate the creative decision facets of that process.

=
\A
Interface EE— M anager
Model Palette
of
/ -

Knowledge
Base of Design
Guidelines

Figure 4. Architectural components of MOBILE.

Functionality

Figure 5 shows the main functional elements of MOBILE
during the design of the screen shown in Figure 1. The
task/presentation manager is shown to the left as a split-
screen view. The palette of widgets (top right) is a toolbar
where each icon represents an available widget. The
canvas area (bottom right) is the drop target for selected
widgets where interface elements are arranged under the
direction of the interface designer.

The right-bottom pane of the task/presentation manager is
the user-task model inspector. Here the interface designer
can review the hierarchy of tasks and subtasks. Limited
operations are possible in this pane. The designer can add
a new task (by clicking on the icon just above the task
inspector), delete tasks, or regroup them in a different
order. More elaborate operations on the user task model
(e.g., setting task attributes) require moving to a separate
model-editing tool in MOBI-D. This separation is by
design and was determined by our evaluation of MOBILE
(see evaluation section). Immediately above the task
inspector is also the end-user selector pull-down list.
Changing the user selected in this list results on the task
inspector being updated with the user-task model for the
specific user type selected.

The left-bottom pane of the task/presentation manager is
the presentation inspector. Here the interface designer can
review the elements of the interface and their relationship
to the user-task elements. The top elements in the
presentation trees are windows (a window can be a regular
window or a dialog panel). Underneath each window, as
per the tree hierarchy is the task(s) assigned to that

LT T | _ (o] =]

Bo Eo Yew Iois

TiDBPU=e = =8| 2] ¢8| alxls

Ha

Fiesenlaion Elements
et d [
= fIF Task Modsl = I Piesentaion Elements

= Fawer Operdtion

-7 View Map Aegion =~ FAevisy Opsision

= Raves Operationindos

0 wiewaSls =- 0 Yiew bap Ragm
== 57 Wiew Mirsion Dals ' Holklep wideel
&[] Uprats 4512 20 Wi A5L:

=~y Cresie Let ol Malensl: -|'\'_‘l o 30 Vigmen
-0 Fanuesl Shiomerks F-0 Wi blizaon Data
<-4 Updsts Shipmerts =] Updse p5ls

P Pieh Bulion

- Leli-Mouse Cick

| x|=|em|EBfat] | | &) &)

i Kot [11:3

e L O]]
For Helg, press F1

Figure 5. The main functional elements of MOBILE: The task/presentation manager on the left, the
palette of widgets on the top right, and a windows canvas area.

particular window by the designer. Each task can have any
number of subtasks. The leaf elements of the presentation
tree are found under subtasks and include the widget that
allows completion of the subtask (e.g., a push button, a 3-
D viewer), and an interaction technique (e.g., a left-mouse
click). Immediately above the presentation inspector there
is a button to create new windows in the presentation tree.

The palette of widgets is a toolbar populated with icons
each symbolizing an available widget. The widgets can
vary from standard ones, such as checkboxes and text
fields, to complex ones, such as the 3-D viewer shown in
Figure 1. These widgets are not created and maintained by
us. They are strictly third-party elements. For example, the
3-D viewer is an ActiveX control supplied by a company
caled DataViews [10]. In general, the MOBILE palette
can access standard Windows95 widgets and any other
widget wrapped as either a Java Bean or an ActiveX
control. The canvas areas in MOBILE are identical to
those of conventional interface builders.

A typical sequence of designer operations in MOBILE is
as follows. The designer starts the tool and selects a target
end user via the user selector. This updates the user-task
inspector with the user-task model corresponding to the
selected end user. The presentation inspector appears
initially empty (except for the root element). The designer
creates one or more new windows that are inserted

automatically into the presentation tree. The next step isto
assign tasks from the user-task model to specific windows.
This is accomplished by simple drag-and-drop operations.
If a dragged task contains any subtasks, these are aso
included in the same window as the parent task (the
designer can later change this assignment).

Following task assignment, the designer selects specific
windows within the presentation tree. For each window,
the designer accepts or modifies the subtasks that are
grouped into that window (by visual inspection). This may
require merging or splitting windows if changes are
desired. Ultimately, the designer reaches a satisfactory
arrangement of tasks into windows. At that point, the
designer then selects each leaf subtask (i.e., a subtask that
has no subtasks of its own) and uses the palette of widgets
to select a widget to complete that particular subtask.
Additionally, the designer can select an interaction
technique(s) to perform the task.

In our example, the sequence looks like this (refer to
Figure 5). The designer selects user1 (of type Major) and
the corresponding user-task model is displayed. After
creating a new window, the designer drags the task review
operation onto the new window. This window is
automatically relabeled review operation window. All
subtasks of review operation are placed under the review
operation window. For each leaf subtask (e.g., view map

region, view AS s) the designer selects one widget from
the palette to perform the operation (e.g., the 3-D viewer
widget for the view ASLs subtask).

Note some interesting decisions from the design of the
screen in Figure 1. The user-task model in the task
inspector of Figure 5 shows four subtasks for the task
review operation. The subtask update ASLs has some
subtasks of its own (as revealed by the “+” sign next to its
name). However, no such subtasks appear for the update
ASLs subtask in the presentation inspector of Figure 5. The
designer has noted that the update subtask is optional (this
is conveyed by the somewhat different icon next to the task
name in the task inspector). Because of its optional nature,
the designer decides not to clutter the screen with
potentially useless elements and to relegate any subtasks of
update AS_s to a different screen. The designer simply
provides a navigation button for the end user whom will
use it, if necessary, to access the update functionality.

Second, the screen in Figure 2 shows that the button for
update AS_s is disabled for a user of type Sergeant. We
already discussed that users of this rank are not allowed to
perform updates. In the task inspector window this results
in the update ASLs subtask not appearing as part of the
user-task model when the designer selects a user of this
rank. Without any changes by the designer, the
consequence would be that the screen of Figure 2 would
contain no button at all for the Update of ASLs. Instead,
the designer decided to add the update ASLs task to the
user-task model of Sergeant and in place of left-mouse-
click (as in Figure 5 for users of type Major) insert
disabled. This decison was made for purely aesthetic
reasons in this case as it avoided creating a wide blank
area within the screen.

This type of close coordination between use-task
requirements and interface building is the main benefit of
MOBILE. Designers can evaluate at all times their
interface building decisions based on the specifications of
the user task. They can also effectively manage the links
between the various types of users, the user-task
specifications for each user, and the widgets and
interaction techniques that correspond to each task and
subtask. Furthermore, assignment of user-tasks into
windows is a direct manipulation operation. None of these
important functions are available in conventional interface
builders.

DECISION SUPPORT

In addition to the basic functionality offered by MOBILE,
a knowledge-based decision support system complements
the assistance given by the tool to interface designers.

As we discussed earlier, a user-task model encompasses
knowledge about the attributes and nature of user tasks as
well as about the domain objects involved in the
completion of a given task. When a designer working with

MOBILE selects a subtask for which a widget must be
assigned, MOBILE can exploit the user-task knowledge to
assist in the assignment process.

Based on the attributes of tasks and their related domain
objects, MOBILE can consult a knowledge base of
interface design guidelines to determine what are the most
appropriate widgets to use for a given task. The knowledge
base is essentidly a decison tree. The inference
mechanism looks at attributes of objects, such as data types
and value ranges, in order to traverse the tree to find
optimal widgets. As a simple example, if a data/domain
object to be accessed via the interface is of type Boolean,
then the inference mechanism will recommend a checkbox
as a suitable widget. The widgets identified in this manner
may also be grouped into discrete categories reflecting
their relative suitability (e.g., high, medium, or low).

When a designer working in MOBILE sets a preference to
work in guided mode, the tool reflects its decision-support
capabilities via the palette of widgets. As the designer
selects a subtask for assignment of a widget, MOBILE
disables al widgets in the palette that make no sense
according to the knowledge base of interface design
guidelines. In addition, MOBILE will highlight the
widgets that are considered of high suitability. In this
manner the attention of the user is directed towards the
optimal widgets and irrelevant choices are removed from
consideration.

In addition to widget assignment, MOBILE also exploits
the user-task models to provide a user-task- and domain-
specific interface building experience to the designer. For
example, in conventional interface builders when the
designer selects a push button from a palette of widgets
and places the widget on a window canvas, the widget
appears with either a generic label (e.g., “button1”) or no
label at all. In MOBILE, every widget assigned appears
already tailored to the specific task and domains. In the
case of Figure 1, the button for updating ASLs first
appears on the window with that label as the information
is carried directly from the user-task model. This
capability serves to further solidify the user-centered
design experience for the user of MOBILE.

BOTTOM-UP INTERFACE DESIGN STRATEGIES

The use of MOBILE described so far follows a strict top-
down approach. First a user-task model must be built, then
MOBILE can be used to lay out a corresponding interface.
It can be easily argued that this limits the freedom of
interface designers. Some designers like to immediately
jump into an interface builder and informally construct
possible designs for a user interface. Having to work out a
user model beforehand may be an undesirable burden for
these designers.

Fortunately, MOBILE can be used by this type of designer
and still potentialy provide some of the user-centered

benefits of the tool. A bottom-up approach with MOBILE
would entail the same kind of free-form interface layout
that is available with a conventional interface builder.
However, once the designer starts settling with a particular
set of layouts, the designer can annotate each window (and
widget) with a newly created user task and then can
arrange the tasks into a skeleton user-task model. In this
mode, MOBILE acts as a design rationale tool. The initial
user-task model can aways be refined into a complete one
that would be useful in any revision and update of the
interface.

EVALUATION

The implementation of MOBILE shown here has evolved
through several evaluations that also included an early
mock-up and two preceding prototypes. Along the way, we
learned what are the functions that designers really want
in a tool like MOBILE, and how the on-screen items
should be arranged for better efficiency in the interaction.

Our initial mock-up did not include a task/presentation
manager. Instead it counted on the existence of a user-task
model-editing tool in MOBI-D. MOBILE smply provided
canvas areas for windows, each with an attached palette of
widgets populated specifically for that window and its
associated task. Users were quick to point out that it was
cumbersome to continually switch from MOBILE to the
user-task model editor. Furthermore, the model editor
included lots of functions that were not relevant at
interface-building time. The one-palette-per-screen
approach also seemed to consume too much screen red
estate.

Our first prototype was entirely task-based (i.e., a user-task
inspector but no presentation inspector). The user-task
inspector included only the functionality for editing user-
task models that users felt was relevant (deleting, adding,
and regrouping tasks). A single palette was attached to the
inspector. The palette changed its widgets according to
which task was selected in the user-task model inspector.
Designers remarked that it was important for them to be
able to see the organization of the presentation elements
(this could be done but only by switching to another view
within MOBI-D).

The second prototype included a task/presentation
manager similar to the current one, and a dynamic palette
that changed its widgets with each task/subtask selection
in the manager. The main difficulty in this version was
that designers did not want the palette changing
continuously. This forced them to visually inspect the
palette for every task to see what widgets appeared and in
what order.

In the current prototype, we fixed the elements of the
palette of widgets. Their location on the palette is always
the same. We simply change their enable/disable state and
highlight widget icons if necessary, as detailed on the

earlier section on decision support. We aso don't make
any changes to the palette if the user is selecting
tasks/subtasks in the user-task inspector (as we did in
previous versions). We only modify the palette when the
user selects a subtask in the presentation inspector. In the
earlier version, it caused confusion for users to be
inspecting user tasks in the user-task inspector for possible
regrouping (i.e., not an actual interface-building operation)
and having the palette change with each selection (a true
interface-building operation).

RELATED WORK

There are three areas directly related to our work: interface
builders, user-centered design, and model-based interface
development. There are excellent comprehensive surveys
of existing interface builders and other software tools [3].
We will refer to those surveys but will remark again that
we are not aware of any interface builder that exploits
interface models to support its operations. Similarly, much
has been written about user-centered design [4]. However,
no specific implementations have arisen from this field to
address the shortcomings of interface builders.

The work closest related to ours is that of other model-
based interface development systems. UIDE [1] was one of
the first systems to introduce the notion of using interface
models to drive interface development. ADEPT [2] used
effectively for the first time user-task models in their
approach to generate user interfaces. UIDE [1] and
Mecano [6], among others, exploited the idea of being able
to generate automatically the elements of an interface
layout from the attributes of the data/domain objects to be
displayed on the interface. A humber of other systems have
aso improved or modified to a certain extent the
techniques of user-task modeling and interface generation.

The key difference between earlier systems and MOBI-D is
that the former placed an emphasis on the automated
generation of an interface given a partial interface model.
For example, generating a concrete interface in ADEPT
from a user-task model. Because of the automated
approach, these systems did not attempt to incorporate
interactive tools, such as an interface builder, directly into
their interface modeling approaches. Therefore, efforts
such as MOBILE have not been attempted in the past by
those systems.

CONCLUSIONS

We have presented a software tool, called MOBILE, which
enables user-centered design approaches for interface
builders. The tool combines the recognized benefits of
user-centered design with the efficient functionality of
interface builders. We have, in addition, created
knowledge-based techniques for decision support that
further augment the capabilities of the tool over
conventional interface builders. We have evaluated the tool

and made extensive changes to its design based on user
recommendations.

MOBILE can serve as an initial step also in demonstrating
the value of mode-based interface development
technologies. We expect to further enhance MOBILE by
providing additional decision-support functions, such as
layout critics. Our current experience with the tool is of
course limited. We do not know yet how it will respond in
designs that include large and complex user-task models.
Nor do we have an extensive knowledge base of interface
design guidelines that will cover a majority of widget
assignment situations. However, we feel the MOBILE
approach significantly helps in advancing user-centered
design principles in practica user interface building, a
definite worthwhile goal.

ACKNOWLEDGEMENTS

The work on MOBI-D is supported by DARPA under
contract N66001-96-C-8525. We thank Hung-Yut Chen,
James J. Kim, Kjetil Larsen, David Maulsby, Dat Nguyen,
David Selinger, and Chung-Man Tam for their work on
the implementation and use of MOBI-D.

REFERENCES

1. Foley, J, et al., UIDE-An Intelligent User Interface
Design Environment, in Intelligent User Interfaces, J.
Sullivan and S. Tyler, Editors. 1991, Addison-Wesley.
p. 339-384.

2. Johnson, P., Wilson, S., and Johnson, H., Scenarios,
Task Analysis, and the ADEPT Design Environment, in
Scenario Based Design, J. Carrol, Editor. 1994,
Addison-Wedley.

3. Myers, B., User Interface Software Tools. ACM
Transactions on COmputer-Human Interaction, 1995.
2(1): p. 65-103.

4. Norman, D. and Draper, S., eds. User Centered System
Design. . 1986, LEA.

5. Puerta, A. and Eisenstein, J. Interactively Mapping
Task Models to Interfacesin MOBI-D, in Proc. of DSV-
IS98: Eurographics Workshop. 1998. Abingdon,
England.

6. Puerta, A. and Eriksson, H. Model-Based Automated
Generation of User Interfaces, in Proc. of AAAI'94.
1994: AAAI Press.

7. Puerta, A. and Maulsby, D. Management of Interface
Design Knowledge with MOBI-D, in Proc. of 1UI97:
1997 International Conference on Intelligent User
Interfaces. 1997.

8. Puerta, A. R. A Model-Based Interface Development
Environment. |EEE Software, (14) 4, July/August
1997, pp. 40-47.

9. Tam, R. C.-M., Maulsby, D., and Puerta, A. U-TEL: A
Tool for Eliciting User Task Models from Domain
Experts, in Proc. of 1UI98: 1998 International
Conference on Intelligent User Interfaces. 1998. San
Francisco, CA: ACM Press.

10.Valaer, L. and Babb, R. Choosing a User Interface
Development Tool. |EEE Software, (14) 4, July/August
1997, pp. 29-39.

