
Interactively Mapping Task Models
to Interfaces in MOBI-D

Angel Puerta and Jacob Eisenstein
Stanford University

251 Campus Drive – MSOB x215
Stanford, CA 94305-5479 USA

+1 650 723 5294
puerta@smi.stanford.edu

http://www.smi.stanford.edu/projects/mecano

Abstract
One of the central elements of model-based interface design is the mapping of
abstract task models into concrete interface designs. It is also one of the least
understood parts of model-based technology. Most previous solutions to this
problem focused on determining automatically such mappings or on hardwiring
the mappings into software. We claim that the nature of the mapping problem is
such that it resists solutions via single formalisms. We propose an alternative
solution in which we build interactive tools that allow developers to view and
manipulate such mappings. By exploring the use of these tools, we should be
able to detect patterns of usage that are good candidates for automation. We
present in this paper the software infrastructure that we have built in order to
allow interface designers to set mappings during the design cycle of an interface.
To enable these capabilities, we exploit the features of the interface modeling
language in MOBI-D (Model-Based Interface Designer), which is able to
represent declaratively mappings between abstract and concrete units of an
interface model

Keywords
Model-based interface development, interface models, user-task models, user
interface development tools.

1 Introduction
The central appeal of model-based interface development [6] is its professed
ability to support the design of an interface from an abstract representation to a
concrete design. Typically, this takes the form of a mapping between a model of
a user task and a model of the presentation and of the dialog of an interface.
Unfortunately, our knowledge about how to define such mappings is very
limited. We lack theoretical foundations to define them, and consequently to
apply them.

Notwithstanding this absence of a well-understood framework, many model-
based systems have attempted to deliver specific solutions for the task-interface
mapping problem. The usual approach is to embed into the code of the system
one such solution. This is the case in systems such as Mecano [4], UIDE [1] and
ADEPT [10] among several others [2, 3, 7, 9]. The result typically is an
inflexible interface design process whose inner workings are beyond the reach of
the users of the system. In addition, because of the limited scope of the

implemented mapping solution, the associated model-based system can
effectively work only within a restricted subset of the design space for interfaces.

We claim that mappings between abstract and concrete elements of an interface
model are loose or fuzzy at best. The design space for even simple interfaces is
large and dependent on many variables. Some of these variables may not even be
quantifiable, such as cultural and psychological aspects. Thus, it is more
appropriate to try to build interactive tools with which interface developers can
create the mappings and operate on them. Naturally, to build such tools we must
first be able to represent those mappings declaratively as part of an interface
model. Because we have such little knowledge about how to se these mappings,
we are following an initial exploratory approach in which we build model-based
interactive tools for user interface design.

In this paper, we present our initial interactive approach to establish mappings
between user-task models and concrete interface designs. The approach is built
into the MOBI-D (Model-based Interface Designer) model-based development
environment. It leverages off the ability of the MOBI-D interface modeling
language to represent explicitly the desired mappings. We have built into
MOBI-D capabilities for various types of interface-model mappings between the
various components of a MOBI-D interface model: user-task, domain,
presentation, dialog, and user. We consider the mappings of task to domain,
domain to presentation, and task to dialog the crucial ones in any interface
design. It is our goal that by allowing interface developers to map interface
model elements interactively, we can establish with experience solid patterns of
usage of these mappings. Detecting such patterns can then lead to more
automated tools for model-based interface development.

The rest of the paper is organized as follows. We first introduce the MOBI-D
interface modeling language and the architecture of MOBI-D. We then describe
the MOBI-D development cycle and illustrate it via an example. Throughout the
example, we will emphasize the MOBI-D tools that developers use to map
interface elements to each other in order to bridge the abstract-to-concrete gap in
the design of an interface via models. We close by summarizing the paper and
pointing some of the potential benefits of our approach.

2 The MIMIC Interface Modeling Language
The foundation for any model-based interface development environment is its
knowledge representation for interface models. In MOBI-D, we have developed a
declarative interface modeling language called MIMIC, which is fully described
elsewhere [5]. For the purpose of this paper we will concentrate on the aspects of
MIMIC that enable support for interactive task-to-interface mappings.

MIMIC is a meta-language that structures and organizes interface models. It
divides an interface model into model components. The current components in
MIMIC are user-task, domain, presentation, dialog, user, and design models. Of
these components, the design model is the unit that represents all of the
mappings among the elements in an interface. In the context of MIMIC, an
interface is made up of all the elements defined in the user-task, domain,
presentation, dialog, and user models. Correspondingly, an interface design is
the set of mappings among those elements represented by the design model. The

MOBI-D tools that afford interactive manipulation of the mappings do so by
providing various views into the design component of MIMIC.

Figure 1. Architecture of the MOBI-D interface development environment.

3 The MOBI-D Interface Development Environment
The Model-Based Interface Designer environment supports end users and
interface developers in designing and implementing user interfaces under a user-
centered development cycle. The environment presents an open architecture and
overcomes many of shortcomings of previous model-based systems.

3.1 Key Innovations
MOBI-D makes a number of technical, methodological, and philosophical
advances. Among them are:

• A comprehensive interface modeling language. This meta-language defines
the structure and relationships of interface models and of the elements of
those models. It solves the problem of partial models and allows the
computational manipulation of interface models as design units. The
language creates two central and distinct MOBI-D concepts: (1) an
interface, which is the set of all elements in an interface model, and (2) an
interface design, which is the set of relations among elements in an
interface. These two concepts are the basis for all the tools and support

Application Development
Environment

Interactive
Development

Tools

Design Assistants

Design Critics

Model Editors

Automated
Development

Tools

Layout Generators

Specification
Generators

Dialog Generators
Interface Model

Components

Design Relations

User Tasks Domain Objects

PresentationsDialogs

User Types

Knowledge Bases

Interface Guidelines

Styleguides

Executable Interface
Specification

Interface
Developer

End User

Application
Developer

Runtime System

Runtime Tools

Help Generator

Usability Analyzer
Application

Interface
Developer

End User

offered by MOBI-D. Interface elements in a MOBI-D model can be
classified into user task, domain, presentation, dialog, and user type
categories.

• A componential approach to interface building. Every widget or interactor
available for layout in an interface produced with MOBI-D is either an
ActiveX control or a Java applet. The interactors may be simple or highly
complex and are viewed as black boxes by MOBI-D (besides the parameters
that these interactors may externally allow being set). As a result, MOBI-D
avoids the low-level modeling that mired many previous model-based
systems. We go as far as claiming that model-based interface development is
impractical in most instances without a componential methodology.

• A decision-support strategy. Tools in MOBI-D aim to support the decision
making process of developers and end users in a cooperative fashion. The
tools are not designed to generate automatically an interface from a partial
specification. This philosophy is in sharp contrast to other model-based
systems and removes the flexibility concerns that pure automation
unavoidably creates.

• A concept of generic interface model. Prototype interface models can be
created and indexed in libraries. Thus, interfaces can be designed as
instances of such generic models. This greatly enhances reuse capabilities
and resource savings.

3.2 Architecture
The diagram in Figure 1 shows the architecture of MOBI-D. The central element
is the interface model normally stored using a knowledge representation format.
Interface developers use the interactive development tools to operate on the
model. In turn, the system may include tools that automatically modify and
refine the model using additional knowledge bases on design rules and
guidelines. Interfaces are generated in a given specification and additional
application-level development can then take place. At runtime, the system may
incorporate tools that aid interaction or collect data based on the developed
interface model. The current version of MOBI-D includes the following tools:

• A user-task elicitation tool to obtain user-task models directly from domain
experts.

• A set of interactive model editors. Each category of interface elements (user
task, domain, presentation, dialog, and user type) is handled via a model
editor with specific functionality pertinent to that category. In addition, a
design model editor allows visualization and editing of the mappings among
interface elements (i.e., the interface design as defined by the MOBI-D
modeling language)

• A task-interface model mapping tool that acts as an interface design
assistant. It allows developers to make global and specific design choices for
presentation and dialog.

• A task-based interface builder. Similar to the familiar palette-and-canvas
builders but where operations are dictated by a user-task model.

3.3 Development Cycle
MOBI-D supports the interface development cycle shown in Figure 2. A domain
expert provides an outline of the user task in textual form. Using the interactive
model editors, an interface developer refines this outline into user task and
domain models. The elements of these models are then integrated by specifying
the corresponding relations among them (i.e., which domain objects are needed
in each user subtask.

In the next phase, the developer uses the interface-design assistant tool to specify
which styles, guidelines, and dialog strategies will be applied. Then, the
developer, in possible cooperation with the domain expert or with end users,
completes the presentation and dialog using the task-based interface builder.
This interface builder is customized according to the user-task and domain
models and the selections made for styles and strategies.

In general, the first two phases in the development cycle define the abstract
elements of the interface while the following phases map those abstract elements
to concrete interface components. In the example that follows we will traverse
the complete development cycle and highlight the mapping operations that take
place.

Figure 2. The MOBI-D interface development cycle.

4 Sample Design Scenario
The domain of logistics is a very challenging one from the point of view of user
interface design. For example, the US military has great demands in any theater
of operations for effective and adaptable visualization and manipulation of
logistics data. As one of our current target domains, we are using MOBI-D to
design adaptive, distributed-information space interfaces for the logistics
operations of the US military. We will illustrate here a small subset of this
project with an interface to request supplies in the a theater of operations. Figure
3 shows the target interface and we will describe below how such interface is
designed using the MOBI-D tools. In the interface, users click on hot spots on

Presentation Design

Strategy and Styles Design

Task-Domain Integration

User-Task Modeling

User Testing

User-Task Elicitation

Dialog Design

Domain Modeling

the map to retrieve supply and status information and to move supplies from one
point to the other.

What quickly complicates this interface is that despite having a clear user task
(i.e., requesting supplies), that task varies slightly for a number of potential
users. For example, officers and enlisted personnel both use the interface but
their concerns when requesting supplies are different. Officers need overviews of
the stock levels for all supplies and can decide on plans for requesting supplies.
Enlisted personnel typically only deal with one class of supplies and cannot
modify requisition plans without further approval. User tasks and the possible
interaction dialogs may also change depending on the status of specific
parameters. The advantage of using MOBI-D here is that it provides the tools
and methodologies to manage and implement the design of the target interface
and all of its variations under a single interface model.

4.1 Eliciting the User Task
Domain experts can use the U-TEL tool [8] in the MOBI-D environment to
specify directly the outline of the user task for a target interface. Figure 4 shows
the U-TEL tool resulting work after a session with an end user of our supplies-
requisition interface.

The end user first types in a free-text description of the task and then categorizes
key terms as objects, actions, or actors (users). Using the categories and the text,
the end user creates an outline of the task that gives a sense of task
decomposition and ordering. The outlines and categories are employed in the
next phase to build user-task and domain models. Our evaluation of this tool [8]
has shown that this method of elicitation is effective for both experienced and
non-experienced computer users.

Figure 4. Eliciting a logistics user task in the MOBI-D environment.

4.2 Creating User-Task and Domain Models
The outline provided by the end user must be transformed into an interface
model, and specifically into the user-task and domain components of such
model. MOBI-D automatically builds a skeleton of those components from the
outline and category information given by the end user. The interface developer
uses the interactive model editors to refine that skeleton into fully specified
model components. Figure 5 shows these editors with our example models.
Typical operations to be performed here are to assign data types to each domain
object, to specify subtask ordering (e.g., sequence, unordered, optional
sequence), and to input ranges of allowed values and default values where
appropriate. This phase transforms a textual description into a model in the
MOBI-D interface modeling language.

The editors in Figure 5 include three areas. The top left view is for the current
hierarchical view of the model component (e.g., the current user-task). The
bottom view accesses the properties of selected model elements. The top-left
view includes prototype objects. These are interface elements that have been
previously specified and have been placed in that area for future reuse. The
prototypes form what is called a generic interface model, one that can be useful
for several interfaces. Generic models are a feature of MOBI-D intended to
reduce the resources needed to create a new interface.

4.3 Task-Domain Mappings: Integrating the User-Task and Domain Models
The elements defined in the user-task and domain models developed in the
previous phase must be incorporated into a design in the MOBI-D sense of the
word. That is, user tasks and domain objects must be mapped to each other in
order to specify which domain objects play a role in each of the subtasks in the
user task model. The interface developer uses the bottom tool show in Figure 5 to
accomplish this integration via drag and drop operations. The editor presents the
full hierarchy of the interface model (left view), and allows browsing of the
mappings among elements (right view). The interaction with this editor is very
similar to that of a file browser. In addition (not shown in the figures), MOBI-D
users also map user types to tasks in order to define which user does what part of
the task model. After this phase, MOBI-D users will have created the design
foundation that drives the rest of the development cycle.

4.4 Task-Interface Mappings: Assisting the Design of the Interface
Under the direction of the interface developer, MOBI-D will now prepare the
interface model for the presentation and dialog design phases. With the support
of an interface-design assistant tool, the developer creates a number of mappings
between the task/domain models and the concrete interface design. There are
three types of operations here as depicted in Figure 6:

• Interactor assignments. MOBI-D suggests what interactor(s) (or widget) is
preferred (high priority) to display each of the domain objects. The
assignment depends on the data type of the object and on a knowledge base
of interface design guidelines. The developer can browse and change the
assignments. Global operations are allowed. For example, the developer can
set that all Boolean objects be displayed with checkboxes. This tool affords a
level of control to the developer that is missing in previous model-based
systems that automatically generate layouts using data types. In the
automated approach, the developers of the model-based system preset the
mappings between domain objects and widgets. In MOBI-D, these mappings
are set interactively, can always be visualized, and can be changed as per the
needs of specific designs.

• Styles. The developer can browse and select a number of standard styles for
the interface. Styles include features such as font groups, preferred location
of OK/Cancel button pairs and so on. It works in a similar fashion to that of
styles in a word processing program. A style is also a type of task-interface
mapping in that it assigns entire sets of concrete interface characteristics to
the overall user-task model

• Strategies. The developer can view and modify the strategies that will be
used to set up the dialog and navigation characteristics of the interface. A
strategy is a type of task-dialog mapping. It answers the question: How are
the characteristics of a user-task model reflected in the dialog of the
resulting interface. Strategies that can be set by the user in MOBI-D include
among others:

1. The number of windows desired (e.g., one window per major subtask in
the user task model).

2. The enforcement of sequential task requirements (e.g., follow strictly
the sequences specified in the user-task model).

3. The enforcement of value ranges for domain objects accessible through
the interface.

Note, for example, that the number of windows strategy is a simple tree-to-tree
mapping. Assume a user-task model (represented as a tree in MOBI-D) with
multiple levels of decomposition. Setting the number of windows slide bar
completely to the left will mean that the resulting interface design will be
mapped to a single window. This would mean that the top task and all of its
subtasks in the user-task model will be accomplished by the end user via this
window. Setting the slide bar to next allowed discrete value to the right will
break the resulting interface design into as many windows are there are
immediate children of the top task in the user-task model. Moving the slide bar
further to the right will be going doing level by level on the user-task tree and
consequently increasing the number of windows in the resulting interface.

As a group, these features give the developer control over how the interface will
be designed. The tool functions as a collection of automation knobs that can be
set by the developer to full, none, or somewhere in between. Our initial

evaluation indicates that developers “turn the knobs” up as they gain familiarity
with the environment (and possibly develop confidence in it).

4. 4 Task-Interface Mappings: Presentation and Dialog Design
This phase is completed by the interface developer (possibly cooperating with
end users) using an interface-builder like tool as shown in Figure 7. This tool,
however, differs significantly from conventional interface builders in the sense
that it is guided by the user-task model and by the selections made in the styles
and strategies phase. The developer moves down the user-task model and for
each leaf in the user task model tree (top window) selects a widget. MOBI-D
orders the possible widgets for each task according to their priority (as set in the
previous phase). The developer is free to use a different widget at this point,
however. Essentially, for each widget selected and placed on the canvas, the
developer has established a mapping between an abstract user-task element and a
concrete interface one.

Because the presentation and dialog design are at all times guided by the
interface model, there is a clear connection between each widget and its
relevance in the overall user task. Moreover, the developer is assured to have
provided interaction functionality for the complete user task model. Furthermore,
end users find it easy to understand the selection of a particular widget since a
connection is clear between the widget selection and the task outline that they
provided at the beginning of the design process.

Figure 7. The task-based interface builder in MOBI-D.

5 Summary
We have presented some initial prototypes to allow interface developers to map
interactively task models to concrete interface designs. We claim that developing
a thorough understanding of such a mapping process is the key to the success of
model-based systems. We expect that by gathering experience with these tools,
we will start detecting patterns of use of these mappings. The patterns can be the
foundation for a theory of task-interface mapping.

6 Acknowledgements
The work on MOBI-D is supported by DARPA under contract N66001-96-C-
8525. We thank Hung-Yut Chen, Eric Cheng, James Kim, Kjetil Larsen, David
Maulsby, Justin Min, Dat Nguyen, David Selinger, and Chung-Man Tam for
their work on the implementation and use of MOBI-D.

7 References
1. Foley, J., et al., UIDE-An Intelligent User Interface Design Environment, in

Intelligent User Interfaces, J. Sullivan and S. Tyler, Editors. 1991, Addison-
Wesley. p. 339-384.

2. Janssen, C., Weisbecjer, C., and Ziegler, J. Generating User Interfaces from
Data Models and Dialogue Net Application, in Proc. of InterCHI'93. 1993:
ACM Press.

3. Lonczewski, F. Providing User Support for Interactive Applications with
FUSE, in Proc. of IUI97. 1997: ACM Press.

4. Puerta, A. and Eriksson, H. Model-Based Automated Generation of User
Interfaces, in Proc. of AAAI'94. 1994: AAAI Press.

5. Puerta, A. R. The MECANO Project: Comprehensive and Integrated Support
for Model-Based Interface Development, in Proc. of CADUI96: Computer-
Aided Design of User Interfaces. 1996. Namur, Belgium.

6. Puerta, A. R. A Model-Based Interface Development Environment. IEEE
Software, (14) 4, July/August 1997, pp. 40-47.

7. Schlungbaum, E. Individual User Interfaces and Model-Based User Interface
Software Tools, in Proc. of IUI97. 1997: ACM Press.

8. Tam, R. C.-M., Maulsby, D., and Puerta, A. U-TEL: A Tool for Eliciting
User Task Models from Domain Experts, in Proc. of IUI98: 1998
International Conference on Intelligent User Interfaces. 1998. San
Francisco, CA: ACM Press.

9. Vanderdonckt, J. M. and Bodart, F. Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection, in Proc. of InterCHI'93. 1993:
ACM Press.

10. Wilson, S. and Johnson, P. Beyond Hacking: A Model-Based Approach To
User Interface Design, in Proc. of HCI'93. 1993.

Figure 3. Partial views of a military logistics interface.

Figure 5. Interactive model editors for the user-task (top), domain (middle), and design
(bottom) components of a MOBI-D interface model.

Figure 6. MOBI-D assistants for task-interface mapping.

