
1

Beyond Data Models for Automated
User Interface Generation
Angel R. Puerta, Henrik Eriksson, John H. Gennari,
and Mark A. Musen

Medical Computer Science Group
Knowledge Systems Laboratory
Departments of Medicine and Computer Science
Stanford University
Stanford, CA, 94305-5479
{puerta,eriksson,gennari,musen}@camis.stanford.edu

Researchers in the area of automated design of user interfaces have shown that the layout of
an interface can, in many cases, be generated from the application’s data model using an
intelligent program that applies design rules. The specification of interface behavior,
however, has not been automated in the same manner, and is mostly a programmatic task.
Mecano is a model-based user-interface development environment that extends the notion of
automating interface design from data models. Mecano uses a domain model—a high-level
knowledge representation that augments significantly the expressiveness of a data model—to
generate automatically both the static layout and the dynamic behavior of an interface.
Mecano has been applied successfully to completely generate the layout and the dynamic
behavior of relatively large and complex, domain-specific, form- and graph-based interfaces
for medical applications and several other domains.

Keywords

Model-based interface development
Automated interface design
Interface models
Domain Models
Data Models

1. Introduction

One of the areas that is receiving increased interest by researchers is that of model-based user
interface development. This emerging technology is centered around the premise that a declarative
interface model can be used as a basis for building interface development environments. The
model-based approach facilitates the automation of the design and implementation of user
interfaces.

2

In addition, researchers have shown that an application’s data model can be used effectively to
generate the static layout of an application’s interface (deBaar, 1992; Janssen, 1992). However,
data models have not been applied to the generation of interface behavior specifications.

In this paper, we present Mecano, a model-based interface development environment that extends
the concept of generating interface specifications from data models. Mecano employs a domain
model to generate not only the layout of an interface, but also its dynamic behavior. Domain models
are high-level representations of the objects and relationships in a domain. Because they explicitly
declare domain characteristics that are not normally part of data models, a domain model offers the
possibility of automating a larger part of the interface design process than what is feasible with
regular data models.

The rest of the paper is organized as follows. We first detail the concept of model-based interface
development and its relationship with automated user-interface design. Then, we define and
exemplify domain models and contrast them to data models. Furthermore, we explore the
architecture of Mecano and describe the interface-behavior generation process. Finally, we relate
this work to other research efforts and present a number of conclusions.

2. Model-Based User-Interface Development

The design and implementation of user interfaces is an iterative process that cycles from design to
development until a satisfactory product is achieved. There are a number of tools that support the
different phases of user interface construction. Current tools either focus on the design phase, or
on the development phase, and have a number of shortcomings that make interfaces difficult to
build.

The principal areas where current user interface tools falter are:

• Lack of integrated design and development support. Design tools such as Hypercard do
not support development, whereas development tools such as many UIMSs do not support
high-level design.

• Lack of support for dynamic behavior specifications. Conventional programming
languages are the only way to specify most of the dynamic aspects of a user interface.

• Low level of automation. Interface components such as windows and menus must be
designed and specified one by one. There is no support for making global changes that affect
all components or groups of components.

• Poor lifecycle support. Design changes are difficult to propagate, and maintenance is time-
consuming because every change must be applied manually to each interface component.

The shortcomings of available user-interface tools are due to a common cause: Developers work at
a low level of abstraction—with items such as windows, widgets, and programming constructs—
but have no access to explicit representations of the design knowledge needed to create an
interface. A solution to such shortcomings is to provide developers with declarative interface
models, that allow manipulation of all facets of interface design at a high level of abstraction. The
key idea is to use an interface model as the central component of an integrated design and
development environment that supports all phases of user interface construction.

Figure 1 shows a basic generic architecture for model-based interface-development systems. The
key component is a declarative interface model that represents the various characteristics of a user
interface design, from presentation and behavior to user- and working-environment preferences.
Because the interface model covers all facets of interface design and development, it can be used
as a central repository of knowledge that software tools can access to perform functions related to
interface construction. Thus, the set of design-time tools manipulates the model directly to build

3

an interface design. Examples of such tools are model editors, design critics, and design-
alternative generators. Similarly, run-time tools use the model to add support to the human–
computer interaction process. Examples of run-time tools are help generators and performance-
monitoring tools. The run-time tools are intrinsically related to the application-state monitor
(which in some systems may be part of the run-time system). This component keeps track of the
current, previous, and possible future states of the interaction, and communicates with the run-time
tools to relay needed state information to those tools. The run-time system—in some systems
called the interface generator—accesses the model to implement the design embodied in a
particular interface model instance as a running user interface.

Figure 1. The basic architecture of a model-based user interface development system. The
interface model is a central repository of interface design knowledge. A set of design tools
manipulate the model to achieve a particular design. The run-time system implements the
design in the interface model as a running interface. The run-time tools support the use of
the interface—with functions such as help—by monitoring the state of the interaction
through the application-state monitor.

Model-based systems create an integrated interface-development environment where developers
move from a generic description of interfaces (the interface model) to a specific description of a
single interface (the interface-model instance) using design-time tools. The systems then take the
model instances and implement them as interfaces, adding the interaction support of the run-time
tools. By centralizing all the design knowledge, and by abstracting such knowledge at a high level,
model-based systems offer the opportunity to streamline the iterative process of interface
construction, to allow implementation of global definitions and design changes, to support
specification of dynamic behavior without the need for conventional programming, and to
automate major parts of the interface-development cycle.

The few model-based systems that have been developed tend to fall into one of two categories: (1)
systems that assist in the design process, and (2) systems that automate the interface-design
process. Systems in the first category normally include design-time tools with advanced model-
visualization and editing capabilities. The underlying philosophy is to facilitate the task of model
manipulation. Systems in the second category contain complex tools that can instantiate large
portions of the interface model for a given interface. Their corresponding philosophy is to
minimize the amount of effort needed for model manipulation during design of an interface. In
general, design-assistance systems offer maximum design flexibility but increase developer effort,

Design-Time
Tools

Run-Time
System

User
Interface

Run-Time
Tools

Application-State
Monitor

Dialog

Presentation

Task

User/Environment

Interface Model

Knowledge
Representation

4

whereas design-automation systems minimize developer effort but offer less design flexibility, thus
requiring additional custom-tailoring to complete satisfactory interfaces. Mecano is a design-
automation model-based development system with special facilities to assist developers in
customizing generated interfaces. In the next section, we examine the approach to interface
generation in Mecano.

3. Automatic User Interface Generation

One important type of design-time tool in model-based interface-development systems is that of
automatic interface generators. Such tools partially specify an interface design from a higher-level
specification, such as a data model, or a dialog representation. Of special interest to the goals of
Mecano as an environment that can integrate the development of applications and interfaces is the
use of an application’s data model to generate the static layout of an interface (deBaar 1992;
Janssen, 1992).

Figure 2 shows a generic framework for automated interface-generation environments that employ
data models. An intelligent program examines the data model and applies a set of design rules to
produce a static layout design for an interface. Because the data model is shared between the
interface design and the target application design, both designs can be coupled, and changes to the
application design can be propagated easily to the interface design. The dynamic behavior of the
interface, however, must be specified separately. This process can take many forms, from using a
graphical editor to construct dialog Petri nets (Janssen, 1992), to assigning sets of pre- and
postconditions to each interface object (Gieskens 1992). Although working with high-level dialog
specifications is helpful to interface developers, it does not automate the design of dynamic
behavior. For large interfaces, editing the dialog specifications is still a time-consuming task
involving the definition of hundreds of actions and conditions, some of which may conflict with
each other.

Figure 2. Generic framework for automated interface-generation environments that
employ data models. The interface design is produced by tools that examine a data model
and a dialog specification. The design may be represented implicitly or explicitly (as an
interface model). The run-time system implements the design.

The main reason that current data-model approaches cannot automate the design of dynamic
behavior is that data models themselves are very limited in what they express. They are applied

Design
Tools

Run-Time
System

Data
Model

High-Level
Dialog

Specification

User
Interface

Interface
Model

(Design)

5

only to serve as a vocabulary to access the data structures of the application. The intelligent design
tools that examine the data model can only make design decisions based on the information in the
data model.

Most of the dynamic behavior of an interface is domain-specific, but data models are not used to
capture effectively the characteristics of a given domain. In Mecano, we intend to use domain
models instead of data models to generate interfaces. A domain model is a representation that
captures all the definitions and relationships of a given application domain and that subsumes the
data model for the application. By substituting the data model in Figure 2 with a domain model,
Mecano does not require dialog-specification editing and is able to generate complete dynamic-
behavior specifications even for large interfaces.

4. Domain Models

A domain model is a representation of both the objects in a domain and their relationships. As such,
a domain model may include a data model of the domain. In the same spirit that interface models
provide developers with access to a higher-level representation of design knowledge, domain
models also allow access to a level of representation higher than that of data models. Whereas data
models establish a vocabulary to access the data structures of an application, domain models
establish a vocabulary to access the objects in an application domain. As we will detail in this
paper, domain relationships are a key to determining the dynamic behavior of user interfaces. With
Mecano, we exploit the relationships defined in domain models to generate dialog and layout
specifications for user interfaces. The result is a theory of how to map domain concepts to interface
designs through a series of mappings connecting a domain object, a domain characteristic, or a
domain relationship to an interface design element—such as a window navigation tree, an
interaction style, or a dialog constraint.

Figures 3 and 4 show partial views of a model for the medical domain of therapy planning
according to standard treatment protocols. We have defined this model using a frame-based
representation language that defines class hierarchies (Gennari, 1993). This frame-representation
language is used to define not only domain models, but also the interface modes that Mecano
employs. Keeping both types of models in the same language improves shareability of the models
with other groups, and facilitates the generation of interface-model instances from domain models.

Figure 3. Partial view of a medical domain model for therapy (protocol) administration.
The part-of hierarchy can be mapped to the window navigation tree of an interface—an
example of the type of mappings domain-to-interface that are exploited by Mecano to
generate interface designs.

DrugPrescription

Follow-Up

Regimen

Chemotherapy

Protocol

Part-of

6

Figure 4. Partial view of the slots and facets (properties) for the chemotherapy class of
Figure 3. The slot type can be mapped to an interaction style (e.g., type string to text-field
object).

5. The Mecano Architecture

Figure 5 shows the major components of the Mecano architecture. This architecture follows the
basic model-based system architecture shown in Figure 1 with some minor variations. The design-
time tools include a model editor (for both domain and interface models), an intelligent designer
to generate interface model instances (i.e., interface designs) from domain models, and an interface
builder to custom-tailor the designs produced by the intelligent designer tool. There is no
application-state monitor since this component is intended to be subsumed by the run-time system.

Figure 5. The main components of the Mecano architecture. The system delivers a
development environment where all phases of interface construction, from design to
maintenance, are supported. The architecture follows the basic model-based system
architecture shown in Figure 1.

Chemotherapy

Slots Facets

(allowed-classes
 :drug)

(type :string)

Drug_Parts

Algorithm

Name

Interface
Builder

Model
EditorIntelligent

Designer

Design Tools

Domain
Model

Interface
Model

Models

User
Interface

Run-Time
System

User
InterfaceUser

Interface

Performance
Monitor

Run-Time Tools

7

Mecano integrates design, development, and maintenance capabilities in a single environment. It
manipulates sharable objects (domain and interface models) that can be used, in the spirit of
ARPA’s Knowledge Sharing Effort (Neches, 1991), by other groups to generate interfaces in their
host environments. Mecano also provides a degree of platform independence by producing textual
interface model instances (i.e., interface specifications) that are implemented by a run-time system.
In this manner, textual specifications can be generated in Mecano, and such specifications can be
implemented by an appropriate run-time system in a different platform.

The process of generating automatically interfaces within the Mecano context is depicted in
Figure 6. The central concept is that of interface model instantiation where the intelligent-designer
tool processes a given domain model and creates an application- and domain-specific instance of
the generic interface model. The instance is created by applying a series of mappings between
domain and interface characteristics. An interface model instance is a fully represented interface
design that is application and domain specific. Once such an instance is available, it can be
implemented as an interface by feeding it to a run-time system in the form of an interface
specification written in a declarative language.

Figure 6. Generating interfaces in Mecano. The intelligent-designer tool instantiates the
interface model for a given application and domain. It processes the domain model and
creates the desired instance through a mapping of domain to interface characteristics. The
run-time system implements the interface model instance by accessing an interface-
specification language version of the instance.

6. Coupling Interface and Application Design

The goal of separating an application from its interface at the development level has been
established as a sound software-engineering principle. The separation allows for a degree of
encapsulation of the design of both elements and minimizes the impact of application software
changes on interface software. The interface and its target application, however, still share a
common data—or knowledge—representation. The application operates on the data and the
interface allows end users to visualize those data. As a consequence, any changes that an
application designer may make to a data model necessitate corresponding changes to the interface
design. To propagate such changes more effectively, it is essential that both application design and
interface design be coupled.

The application data model is the obvious first candidate for the basis for coupling both designs;
that approach has been taken by some groups (deBaar, 1992; Janssen, 1992). Furthermore,
researchers are now exploring domain models, rather than data models, as the foundation for

Intelligent
Designer

Tool

Domain
Model

Interface
Model

User
Interface

Run-Time
System

Interface
Model

Instance

8

domain-specific software applications (Puerta, 1993b). These researchers, however, have
concentrated on application design but not on user-interface design.

The Mecano approach to user interface generation has the added advantage of providing a direct
way to achieve two highly desirable goals: coupling application design with interface design and
automating the generation of complete interface designs—including static layout and dynamic
behavior. Our laboratory is developing an environment to build domain-specific software
architectures, called PROTÉGÉ-II (Puerta, 1993b) that uses domain models as the basis for
application development. Mecano and PROTÉGÉ-II will constitute an environment in which the
coupling of application design and interface design is realized.

7. Generating Interfaces with Mecano

The interface development cycle of Mecano is shown in Figure 7. After a domain and task analysis,
a domain model is defined with the model editor shown in Figure 8. It is not necessary to build
domain models from scratch for every application. For example, a domain model for medical
therapy planning can be reused, with minor variations, in other applications. This is a significant
advantage of Mecano over systems that design from data models because data models are difficult
to reuse across applications.

Figure 7. Mecano defines an iterative interface development process with a high degree of
automation.

Build
Domain
Model

Custom-Tailor
Design

Generate
Layout

Generate
High-Level

Dialog

Generate
Low-Level

Dialog

Developer and Participatory Design Actions

Mecano Processes

Iterate

9

Figure 8. Developers edit domain models with a browser tool that allows definition, review,
and inspection of models.

Once edited, the domain model is used to generate dialog specifications. These specifications have
two levels in Mecano (Puerta, 1994; Puerta, 1993a):

• High-level dialog defines all interface windows, assigns interface objects to windows, and
specifies the navigation schema among windows in the interface.

• Low-level dialog defines specific dialog elements (widgets) to each interface object created
at the high level and specifies how the standard behavior of the dialog element is modified for
the given domain.

7.1. High-Level Dialog Generation

The elements of the high-level dialog specification are generated by examining the class hierarchy
of the domain model (see Figure 3) and the slots of each class (see Figure 4). Figure 9 shows an

10

interface generated from the partial domain model shown in Figures 3, and 4. The complete
medical domain model for therapy administration generates an interface with over 60 windows and
hundreds of widgets. Note that the dialog for window navigation is established during high-level
dialog design but that it can be refined, or augmented, at low-level dialog design time. The
procedure to generate a high-level dialog design is as follows:

• Each class in the hierarchy is assigned a window.

• Window navigation is established by searching the class hierarchy for links indicated by the
allowed-classes facet in the domain model. For example, the Drug window shown in Figure 9
is accessed from the Chemo window because the Drug class is an allowed class for the slot
Drug_Part.

• Each window is assigned one interface object per slot in the class. After generation, the
developer has the option of customizing the interface by splitting windows multiple objects into
two or more windows. Interface objects are assigned actual widgets during low-level dialog
design.

Figure 9. A form-based interface generated from the domain models partially shown in
Figures 3 and 4. The interface generated from the full domain model for medical therapy
consists of over 60 windows and hundreds of dialog elements.

7.2. Layout Generation

Layout generation is similar to that performed by other systems such as UIDE (deBaar, 1992;
Gieskens, 1992) and GENIUS (Janssen, 1993) that use data models to generate the layout:

Display
Graphical
Editor

Display Window

Interface Objects
from Protocol
Class Slots

Update After User Input

High-Level Dialog Design

Low-Level Dialog Design

Window for
Protocol Class

11

• Each interface object defined at high-level design time is assigned a dialog element (widget)
by examining the facets of the corresponding slot in the domain model. For example an object
of type string is assigned a text field, an object of type Boolean is assigned a check-box widget,
and an object of type string and cardinality multiple (i.e., the object can be multiple-valued) is
assigned a list browser.

• Each dialog element is placed on its corresponding window by a layout algorithm that
observes interface design guidelines.

7.3. Low-Level Dialog Generation

Elements of the low-level dialog specification are generated by examining the facets (properties)
defined for each slot in the domain model (see Figure 4). These facets include part-of relationships
among classes.

• Each dialog element may be assigned actions beyond the standard behavior of the dialog
element by examining the facets of the corresponding slot in the domain model. Examples of
dialog-element actions include disabling editing in other dialog elements, and updating values
in other dialog elements after a user input action (see Figure 9).

Note that the specification of dialog-element actions is one of the important operations that are not
automated in systems that rely on data models for interface generation.

7.4. Layout and Design Revision

After Mecano produces generates an executable design, the developer conducts participatory
design sessions with end users to custom tailor the design and make appropriate changes. Note that
the required changes may necessitate editing of the corresponding domain model, and
consequently, regenerating a new interface design.

Mecano provides facilities for reapplying any customizations done to a design before it was
regenerated (Eriksson, 1994). Thus, Mecano allows developers to experiment with early prototypes
and to quickly revise stable designs. Our experience in participatory layout revision with end-users
is that working sessions, even for large interfaces, can be completed is a few hours at the most.

7.5. Domain-Specific Graphical Editors

In addition to the form-based interfaces shown in Figure 9, Mecano can generate layout and
behavior specifications for domain-specific graphical editors. For example, consider the following
slot information for the class Protocol:

(slot algorithm
(type :procedure)
(allowed-classes :xrt :chemotherapy :drug))

The intelligent designer tool in Mecano examines this slot and creates an abstract interface object
for the slot, then due to the type procedure in the slot, it maps the interface object to a graphical
editor as its dialog element. The tool also defines three graphical objects to be used during editing,
one for x-ray therapies (xrt), one for chemotherapies (chemo), and one for drugs using information
derived from the allowed-classes facet of the algorithm slot. Figure 10 shows a graphical editor
generated from the above slot definition.

12

Figure 10. A graphical editor for the specification of medical procedures. The available
drawing objects and the constraints on their interconnectivity at run-time are determined by
Mecano during the dialog-generation phases.

8. Related Work

There are a number of model-based development environments reported in literature that are
closely related to the Mecano effort.

The TRIDENT (Vanderdonckt, 1993) system bases the interface generation process on a user-task
analysis that yields a user-task model and an application model that drive the generation process.
TRIDENT automatically designs high-level dialog and presentation specifications that follow
declarative interface design guidelines stored as part of the system’s knowledge base. TRIDENT
is geared toward assisting developers, in contrast to the automation emphasis on Mecano. Thus,
users of TRIDENT must use extensively the available model editing tools to define in greta detail
the task and application characteristics required for dialog generation. TRIDENT does not generate
low-level dialog specifications.

Another development environment centered around a user-task model is ADEPT (Johnson, 1994).
This system allows development of interfaces through an evolutionary process of editing a task
model, generating a prototype, and refining the task model. As with TRIDENT, it requires
extensive editing and the specification of interface actions directly through the task model editing
tool—a step automated for the type of interfaces generated with Mecano.

The GENIUS environment (Janssen, 1993) uses an entity–relationship data model, along with a
graphical editor for dialog specifications, to generate interfaces. The data model, which can be
edited graphically, provides the basis for the definition of the interface components and their
layout. The graphical editor allows the review of dialog nets, a variation of Petri nets, that define

13

the actions of the interface objects and the conditions that preclude or follow those actions.
GENIUS is not designed to generate behavior specifications from high-level models (e.g., a task
model).

The UIDE environment includes a tool for static layout generation from an extended data model
(deBaar, 1992). The specification of dynamic behavior, however, must be achieved by defining sets
of pre- and postconditions (Gieskens, 1992) for each one of the interface objects.

HUMANOID (Szekely, 1993) defines an elaborate interface model that includes components for
the application, the presentation, and the dialog. Developers construct application models and
HUMANOID picks among a number of templates of interfaces to display the interface. The
developer can then refine the behavior of the interface by editing the dialog model. HUMANOID
assists, but does not automate, the generation of dynamic behavior specifications, and requires
considerable additional developer effort to generate interfaces that do not conform to its templates,
as is the case with most complex interfaces.

9. Analysis and Conclusions

We have presented Mecano, a model-based development environment that extends the notion of
using data models to drive interface-specification generation. The main advantages and
contributions of Mecano are:

• Use of domain models to drive interface-specification generation. Domain models make
explicit domain information and relationships that are not included in data models. Domain
models are reusable across applications.

• Generation of both the static layout and the dynamic behavior of domain-specific, form- and
graph-based interfaces, including relative large and complex ones, for multiple domains (e.g.,
medical treatment, elevator configuration).

• A highly automated design environment that supports the full development cycle of an
interface while coupling interface and application design.

• Textual interface-model instances that can be made executable by multiple run-time systems,
thus providing a degree of portability to the generated interfaces.

• A basic theory of how to amp domain characteristics to interface design specifications.

The automatic nature of the Mecano development process constricts the design space of the
generated interfaces. We have emphasized participatory design revisions as part of the Mecano
environment to balance in part the lack of human input in the generation phase. In addition, the
generation of interfaces from domain models is most effective for interfaces with relatively fixed
dialog structures—as is the case with the form- and graph-based interfaces supported by Mecano.
Interfaces with highly complex and flexible dialog structures do probably need the existence of a
detailed task model—such as those in ADEPT (Johnson, 1994)—to drive the generation of the
interface. We are researching ways to combine the task modeling capabilities available in Mecano
through its generic interface model with the domain-model driven approach to user interface
generation.

Overall, Mecano provides a combination of comprehensive design and development support, level
of automation, and portability of generated interfaces that should form the basis for continued
research into complete and effective interface development environments.

14

Acknowledgments

This work has been supported in part by grants LM05157 and LM05305 from the National Library
of Medicine, and by gifts from Digital Equipment Corporation. Dr. Musen is recipient of NSF
Young Investigator Award IRI-9257578.

References

de Baar, D.J.M.J., Foley, J.D. and Mullet, K.E. (1992). Coupling Application Design and User Interface Design. In
Proceedings of Human Factors in Computing Systems, CHI’92. Monterey, California, May 1992, pp. 259–266.

Eriksson, H., Puerta, A.R. and Musen, M.A. (1994). Generation of Knowledge-Acquisition Tools from Domain
Ontologies. In Proceedings of the Eighth Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, Canada, February 1994. pp. 7.1–7.20.

Gennari, J.H. (1993). A Brief Guide to Maître and MODEL: An Ontology Editor and a Frame-Based Knowledge
Representation Language. Stanford University, Knowledge Systems Laboratory, Report KSL-93-46, Stanford,
USA. June 1993.

Gieskens, D.F. and Foley, J.D. (1992). Controlling User Interface Objects through Pre- and Postconditions. In
Proceedings of Human Factors in Computing Systems, CHI’92. Monterey, USA, May 1992, pp. 189–194.

Janssen, C., Weisbecker A. and Ziegler J. (1993). Generating User Interfaces from Data Models and dialog Net
Specifications. In Proceedings of Human Factors in Computing Systems, INTERCHI’93. Amsterdam, The
Netherlands, April 1993, pp. 418–423.

Johnson, P., Wilson, W., and Johnson, H. (1994). Scenarios, Task Analysis, and the ADEPT Design Environment. In
J. Carroll (ed) Scenario-Based Design. Addison-Wesley. (In Press).

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W. (1991). Enabling Technology for
Knowledge Sharing. AI Magazine, 12 (3), pp. 36–56

Puerta A.R. (1993a). The Study of Models of Intelligent Interfaces. In Proceedings of the 1993 International Workshop
on Intelligent User Interfaces. Orlando, USA, January 1993, pp. 71–80.

Puerta, A.R., Tu, S.W., and Musen, M.A. (1993b). Modeling Tasks with Mechanisms. International Journal of
Intelligent Systems, 8(1), pp. 129–152.

Puerta, A.R., Eriksson, H., Gennari, J.H., and Musen, M.A. (1994). Model-Based Automated Generation of User
Interfaces. In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI94. Seattle, USA,
August 1994.

Szekely, P., Luo, P. and Neches, R. (1993). Beyond Interface Builders: Model-Based Interface Tools. In Proceedings
of Human Factors in Computing Systems, INTERCHI’93. Amsterdam, The Netherlands, April 1993, pp. 383–390.

Vanderdonckt, J.M., and Bodart, F. (1993). In Proceedings of Human Factors in Computing Systems, INTERCHI’93.
Amsterdam, The Netherlands, April 1993, pp. 424–429.

