
1

The New World of Mechanisms

Angel R. Puerta, Samson W. Tu, and Mark A. Musen
Medical Computer Science Group
Knowledge Systems Laboratory

Stanford University
Stanford, CA 94305-5479, USA

puerta@camis.stanford.edu

ABSTRACT

A goal of second-generation expert systems is to supply knowledge engineers with common
frameworks to develop expert systems, thus, eliminating the need to build entirely new systems
for each application. A mechanism is a unit of problem-solving knowledge from which such a
framework can be developed. We define what a mechanism is and how it can be engineered to
compose models of problem solving for expert systems. We also introduce PROTÉGÉ-II, an
expert-system development environment based on mechanisms. Using PROTÉGÉ-II, knowledge
engineers can implement all the elements of an expert system, from the problem-solving
specifications, through the definition of knowledge-acquisition tools, to the editing of the domain
knowledge in the knowledge base. The use of PROTÉGÉ-II is demonstrated with an example
from the medical domain of AIDS therapy.

Keywords: Artificial intelligence, expert systems, knowledge engineering, knowledge
acquisition, problem-solving methods, generic tasks.

1. Second-Generation Expert Systems

Research on knowledge-based systems during the 1970s resulted, during the following decade, in
the first generation of commercially available expert systems. The construction of expert systems
in this period concentrated on two implementational aspects of knowledge-based systems: (1) the
representation of knowledge (e.g., as rules, frames, or semantic networks), and (2) the reasoning
strategy of the inference engine. One of the crucial shortcomings of this generation of expert
systems was the brittleness of the resulting implementations; that is, a system designed for a
particular task could not be adapted easily to provide expertise for a different task. Consequently,
researchers now developing the second generation of expert systems are examining how
knowledge is used in an expert system, as opposed to how knowledge is implemented. One of the
paradigms being studied is that of using models of problem solving, or problem-solving methods,
as a foundation to build expert systems. Problem-solving methods determine how a task is to be
solved, and can be applied to a class of tasks, thus partially overcoming brittleness.

There are numerous examples of models of problem solving, and of knowledge-based systems
implemented using those models. Skeletal-plan refinement [Friedland and Iwasaki, 1985] is a
method that solves problems by elaborating a general (skeletal) solution plan, and by then
recursively refining the general plan into more detailed plans until a final, fully detailed plan is
produced. Heuristic classification [Clancey, 1985] is a method that determines solutions to given
tasks by evaluating to which category the solution belongs. SALT [Marcus and McDermott, 1989]

2

is a knowledge-acquisition tool that generates problem solvers based on the propose-and-revise
model of problem solving. ROGET [Bennett, 1985] is a system that performs diagnostic tasks
using a version of the heuristic-classification model.

Although expert systems built around problem-solving methods are not limited to performing a
single task, they are still restricted to the class of tasks that can be modeled under the particular
problem-solving method. There are two alternatives to overcome this limitation. The first one is to
define more general models of problem solving, which would result in methods that can solve a
larger class of tasks. Since there is a certain cost in effort in specializing from a general method to
a specific implementation, the drawback with this option is that making models more general also
makes them more difficult to apply to specific problems [Klinker et al., 1991]. The second
alternative—the one that we advocate in this paper—is to develop architectures that, with a single
inference engine, can support multiple models of problem solving, and that thus potentially place
no limit on the kinds of tasks that they can perform. But because each method requires a different
inference engine, to build such architectures, we need a unit of knowledge different from the
problem-solving method. We call such a unit a mechanism. The unit serves both as a building
block for assembling problem-solving methods, and as a basis for developing an inference engine
that can process mechanisms, or combinations of mechanisms.

In this paper, we introduce the concept of mechanisms and their usefulness to the knowledge-
engineering endeavor. In Section 2, we explain how mechanisms can be combined to form
problem-solving methods. Section 3 contains an overview of PROTÉGÉ-II—a shell to build
problem solvers for methods assembled with mechanisms that is under development at our
laboratory. Section 4 demonstrates the use of PROTÉGÉ-II in building an advice system for AIDS
therapy. Finally, in Section 5, we discuss how the availability of mechanisms, and of architectures
based on them, changes the role of knowledge engineers in developing knowledge-based systems.

2. What Is a Mechanism?

The concept of a mechanism is closely related to that of a task. The word task is defined
differently throughout the literature, and its meaning is dependent on the context in which it is
applied. We call a task a representation of a real-world problem. A task has a set of inputs and a
set of outputs. A mechanism is then a procedure that solves the problem represented by the task.
Thus, a task specifies what is the problem to be solved, whereas a mechanism specifies how to
solve that problem (Fig. 1a). Note that, in the definition of a mechanism, there is no restriction
regarding the implementation form that the procedure takes (e.g., as rules or frames). The
relationship between mechanisms and tasks is many-to-many. A mechanism can solve any task
whose inputs and outputs can be mapped to those of the mechanism, and vice versa.

The task–mechanism correspondence constitutes the basis for the idea of using mechanisms as
building blocks to compose models of problem solving. By definition, a problem-solving method
decomposes a task into subtasks, and then solves each subtask separately to reach a final solution.
Consequently, if each one of these subtasks can be mapped to a mechanism, we can state that
methods are in fact decomposable into mechanisms (Fig. 1b). The result is that we have an unit of
control knowledge that is appropriate for assembling problem-solving methods. In addition, since
each mechanism is a black box that encloses its own control flow, an inference engine for
mechanisms would need only to execute mechanisms as dictated by the decomposition set by the
method, and to have access to a knowledge base that satisfies the input requirements of the
mechanisms.

3

Figure 1. Tasks, methods, and mechanisms. (a) A mechanism is a unit of control
knowledge that completely solves the problem represented by a task. (b) A method
is a composite unit of control knowledge that subdivides tasks into subtasks. The
subtasks are then performed by mechanisms. Consequently, methods can be
viewed as being composed of mechanisms.

To formalize how mechanisms and problem-solving methods relate to each other, we declare two
operations: method configuration and method assembly. These operations correspond respectively
to top-down and bottom-up approaches to the implementation of methods. In method
configuration, we start with an existing method; examine the decomposition of tasks into subtasks
that such method imposes; and configure that method by finding, for each subtask, a mechanism
whose inputs and outputs map to those of the subtask. On the other hand, in method assembly, we
begin with individual mechanisms, and assemble them by matching the output of one to the input
of another, thus producing a new method. Obviously, the assembly of methods is a much more
complex process than is that of configuration because assembly involves the creation of a new
decomposition of tasks into subtasks that must be applicable to a whole class of tasks if the
created method is to be useful.

Based primarily on method configuration, expert systems can be developed that apply the notions
of mechanisms and problem-solving methods. A method provides a proper decomposition of
tasks, a method-configuration operation assigns mechanisms to each subtask, a knowledge-
acquisition tool obtains the knowledge required by the mechanisms, and an inference engine
reasons about the knowledge base according to the control flow dictated by the mechanisms and
the task decomposition. Perhaps even more important, those same notions can be the foundation
for complete development environments that support all facets of expert-system construction from
mechanisms. In the next section, we describe such an environment: PROTÉGÉ-II, a system under
development at our laboratory.

3. Overview of PROTÉGÉ-II

The PROTÉGÉ-II environment [Puerta et al., 1992; Tu et al., 1992] is a descendant of PROTÉGÉ
[Musen, 1989], which was a knowledge-acquisition tool founded on a single problem-solving
method, but that did not incorporate the concept of a mechanism. PROTÉGÉ-II is designed

Task Mechanism

Method Mechanism

Mechanism

Mechanism

Subtask

Subtask

Subtask Result

(a)

(b)

Task

Result

Result

Result

4

primarily for use by knowledge engineers; it provides for them the necessary tools to build
knowledge bases and problem solvers. It includes the following functionality:

1. Library facilities for methods and mechanisms

2. Method configuration

3. Generation of knowledge-acquisition tools

4. Knowledge editing

Figure 2 depicts an overview of PROTÉGÉ-II with its four main subcomponents: the library
subsystem, the user-interface management system, the whiteboard, and the application (i.e, the
resulting advice system).

Figure 2. An overview of PROTÉGÉ-II. The system includes library-like storage
for methods, mechanisms, and domain ontologies; a user-interface management
system that controls the generation of knowledge-acquisition tools, and the use of
such tools by domain experts; and a whiteboard that serves as a central repository
for configured methods and acquired domain knowledge. The resulting application
uses a common inference engine that operates on the knowledge stored in the
whiteboard.

The whiteboard acts as a central repository for the whole system. It contains the configured
problem-solving method as well as the knowledge base, and it is accessed by all components. The
whiteboard is so named to distinguish it from the traditional view of a blackboard [Nii, 1986]. As
in the blackboard architecture, the subsystems in PROTÉGÉ-II contribute incrementally to the
whiteboard in building a solution (i.e., a problem solver). In contrast to blackboard systems,
however, the system components cannot access the whiteboard opportunistically. Instead, access

Whiteboard

KA-tool generator

Whiteboard

KA-Tool Generator

KA Tool

Methods,
Mechanisms,
& Tasks

Domain
Ontologies

Applications

5

must follow a fixed order of events. This sequence of actions is as follows: (1) method selection,
(2) method configuration, (3) task modeling, (4) knowledge-acquisition tool generation, (5)
knowledge-base editing, and (6) application-level interaction. The first four actions are performed
by a knowledge engineer, the acquisition and editing of knowledge is done by a domain expert,
and the interaction at the application level involves the end user of the expert system.

Method selection, method configuration, and task modeling are conducted within the library
subsystem. The library is a storage–retrieval tool for methods and mechanisms. The goal of this
subsystem is to supply the knowledge engineer with search utilities that facilitate the selection of
a preassembled problem-solving method, and to direct the assignment of individual mechanisms
to subtasks of the selected method (i.e., method configuration). The selection and configuration of
a method rely on the skills of the knowledge engineer to interpret the information available in the
library about each method, and on the analysis of the task that the engineer performs. This task
analysis may include, among other activities, consultations with domain experts, and
identification of the inputs and outputs of the task for which an advice system is to be developed
with PROTÉGÉ-II.

By definition, problem-solving methods, configured or not, are domain independent. Therefore, to
be applied to a specific task, a method must be specialized for the domain of interest. This process
is known as task modeling in PROTÉGÉ-II. It embodies the definition of domain terms in the
format dictated by the configured problem-solving method (e.g., as a hierarchy of terms, or as
frames). For example, in the medical domain, terms such as patients, treatments, and medications
are described as a hierarchy for the skeletal-plan refinement method of the PROTÉGÉ-II library.

It is because of the need for task modeling that the library subsystem also includes storage of
domain ontologies. These ontologies are structured representations of domain terms, and their
interrelationships, that can be edited by the knowledge engineer to fit given configured methods,
thereby minimizing the work required to specialize a method. Note that task modeling is the
factor limiting how general problem-solving methods can be Making a method more general
implies more complex task modeling for specialization, thus reducing the usefulness of the
method itself despite its applicability to a larger class of tasks.

After task modeling, the whiteboard contains a configured method and an edited domain
ontology. Those two elements are sufficient for the inference engine to control the reasoning
process of the advice system. However, the knowledge required by such process is still to be
acquired and placed on the whiteboard. Under PROTÉGÉ-II, the knowledge engineer is not
responsible for eliciting such domain knowledge from domain experts. Instead, domain experts
supply knowledge directly through a knowledge-acquisition tool. Because it would be extremely
difficult to implement a knowledge-acquisition tool useful for every possible domain, PROTÉGÉ-
II generates a custom-tailored tool for each domain. A user-interface management system called
Mecano [Puerta, Egar, and Musen, 1991] controls the generation of the knowledge-acquisition
tools, the use of these tools by domain experts, and the storage of the acquired knowledge in the
whiteboard.

To generate a new knowledge-acquisition tool, the utilities in Mecano examine the structure of the
edited domain ontology that resides on the whiteboard, identify which domain terms must be
represented in the generated tool, and select interaction styles for each identified term. Currently,
there are two interaction styles supported in PROTÉGÉ-II: forms and graphical editors. We have
chosen to implement these two styles first because they are most relevant to applications in the

6

medical domain. Forms are a natural medium for expert physicians to enter facts (e.g., symptoms,
laboratory-test results) into a knowledge base, and graphical editors are appropriate for procedural
knowledge (e.g., the flowchart of a treatment plan). Once a tool is generated, Mecano manages the
editing session with the domain expert, and translates the acquired knowledge from the input
format of the tool to the format required for storage in the whiteboard. For example, in the case of
a flowchart, the translation would involve taking a graph, converting it into a textual description,
and compiling that description into the target code of the whiteboard [Egar, Puerta, and Musen,
1992].

When the editing of the knowledge base is complete, the advice system is ready to be run by an
end user. In the next section, we shall illustrate the use of PROTÉGÉ-II with an example from the
medical domain.

4. An AIDS-Protocol Advisor

The final stage for the development of new medications is the performance of clinical trials in
which patients receive either the new drug or a standard therapy—in some cases, simply a
placebo. By comparing the response of patients to whom the new drug was administered with
those to whom the standard therapy was administered, researchers can draw conclusions about the
effectiveness of the new drug. The treatment plan that specifies how each patient enrolled in the
clinical trial is cared for is detailed in a document called a protocol. This document, which can
normally be represented as a flowchart, often is complicated. It must detail the symptomatology
that makes a patient eligible to be enrolled in the clinical trial, the procedure by which patients are
assigned to the standard therapy or to the actual drug, the dosages, and the changes to the
treatment plan that must be made when the patient has adverse reactions to the treatment.
Protocols are normally written by a committee of physicians and administered at various hospitals
by many different physicians. Often, however, the administering physicians have difficulty
understanding the instructions given in the protocol; as a result, they may make variations to the
treatment plan that can render the results of the clinical trial invalid. Given that administering
physicians generally cannot readily consult the authors of the protocol, they would find useful an
expert system that could provide advice on protocols.

In developing an expert system for clinical trials with PROTÉGÉ-II, the first step is to formalize
the task in terms of inputs an outputs. We will designate the task of advising a physician regarding
a protocol as clinical-trial management. Such a task will take as inputs a treatment plan (i.e., a
protocol), the case data for a patient, and the current time, and will produce as output the next
action to be taken in the treatment plan for the given patient. The second step is to find a method
in the library that is applicable to the defined task. One of the indexing schemes in this library
allows the retrieval of methods that match the input–output characteristics of the task. In our case,
one of the methods that can be retrieved in this manner is episodic skeletal-plan refinement, a
version of skeletal-plan refinement that accepts temporal data, as is required in our problem. This
method receives the following inputs:

1. A hierarchy of planning entities

2. A set of plan data

3. A time value

It delivers a single output:

1. A fully detailed solution plan for the given time value

7

Figure 3. Method configuration for the AIDS-protocol advisor. Episodic skeletal
plan refinement decomposes clinical-trial management into the three subtasks
shown. Three mechanisms have been selected from the PROTÉGÉ-II library to
perform the subtasks. The selected method iteratively decomposes a plan into
subplans and, based on the plan data, generalizes these subplans and revises the
generalizations made.

The last two inputs and the output of the method map easily to the respective inputs and outputs of
the clinical-trial management task. The first input is a little trickier because episodic skeletal-plan
refinement does not input plans directly. It is in these situations that the skills of the knowledge
engineer become crucial in determining the applicability of the selected method. In this case, the
method inputs a hierarchy of primitives (i.e., planning entities) with which plans can be
constructed, thus creating a knowledge-acquisition requirement. The knowledge engineer must
ascertain that it will be possible, through task modeling, to edit a domain ontology from which an
appropriate knowledge-acquisition tool can be generated. A protocol author should be able to use
the generated tool to put together the protocols that satisfy the knowledge-acquisition requirement
of the episodic skeletal-plan refinement method.

Task modeling proceeds after the selected method is configured. Figure 3 shows the configured
method for our example. Through a process of search, selection, and evaluation—similar to that
done for the method—mechanisms are applied to each of the three subtasks stipulated by the
method. Now the goal of the knowledge engineer is to identify primitives in the domain of AIDS
therapy, and to structure these primitives into a hierarchy as required by episodic skeletal-plan
refinement. A three-level tree, as shown in Figure 4, suffices in this instance. Based on the edited
domain ontology, and on the fact that procedural knowledge is best acquired graphically, the
knowledge-acquisition tool shown in Figure 5 is generated. Protocols are entered through this tool
into the knowledge base enclosed in the whiteboard. After the knowledge base is complete, the
advice system is ready to be run by the administering physicians.

Episodic
Skeletal-Plan
Refinement

Generalize
From

Situation

Instantiate
And

Decompose

Situation-Based
Repair

Plan
Decomposition

Plan
Generalization

Plan
Revision

Clinical-Trial
Management

Task

Method

Subtasks Mechanisms

8

Figure 4. The domain ontology for AIDS therapy under the episodic skeletal-plan
refinement method. The hierarchy states that AIDS protocols include tests and
regimens, and that each regimen includes the administration of various
medications.

5. Discussion

Knowledge engineers are the principal developers of knowledge-based systems, particularly of
expert systems. Often, however, their work concentrates on implementational details of these
systems, such as control flow, knowledge representation, and reasoning strategies. They put far
less effort into actually manipulating knowledge as an abstract entity. Furthermore, considerable
duplication of work takes place because these systems are useful generally for a single task, and
cannot be adapted easily to different domains.

A second generation of expert systems is now being studied by researchers. It will focus more on
how knowledge is used as opposed to how knowledge is implemented. These systems will reduce
the duplication of effort by defining common frameworks from which expert systems are derived.
These frameworks are based on ideas such as generic tasks [Chandrasekaran, 1986] and problem-
solving methods [McDermott, 1988], which have spawned several development environments for
expert systems [Puerta, Tu, and Musen, 1992; Steels, 1990; Marques et al., 1992]. PROTÉGÉ-II is
one of such environments that uses a unit of knowledge, called a mechanism, to build problem-
solving methods, to generate knowledge-acquisition tools, and to produce problem solvers for a
potentially unlimited number of domains.

The benefits of using mechanisms as a basis for expert-system construction are manyfold. First,
mechanisms provide a simple way to compose problem-solving methods. Second, as used in
PROTÉGÉ-II, mechanisms create a structured representation of domain terms from which
knowledge-acquisition tools can be generated automatically. Because these tools are geared for
use by domain experts, they free knowledge engineers from certain elicitation tasks that must be
normally performed. Third, by embodying their own control-flow configuration, mechanisms
allow the development of a generic inference engine that can be applied to any problem solver
built from mechanisms, thereby shielding the knowledge engineer from several of the problems of
implementation of a reasoning strategy.

protocol

RegimensTests

MedicationsPart-Of
Relationship

9

Figure 5. A knowledge-acquisition session with a domain expert. The generated
knowledge-acquisition tool provides a palette of graphical elements that the
protocol author uses to draw the protocol flowcharts. The screens shown detail the
procedure to follow to administer tests to determine T-cell counts on the patient.

PROTÉGÉ-II provides a library of problem-solving methods, preassembled from mechanisms,
that allows knowledge engineers to redefine expert-system development as an activity that
requires a careful search for appropriate methods for the given problem, and the specialization of
the selected method to the domain of interest. The library saves the PROTÉGÉ-II users from the
difficult task of assembling problem-solving methods. Based on studies of expert systems
previously implemented in our laboratory, we are proceeding with the assembly of methods and
the definition of mechanisms for the PROTÉGÉ-II library.

Although the assembly of methods clearly remains a challenge, we have gained considerable
experience through our use of PROTÉGÉ-II. That experience makes us optimistic about the future
of development environments using mechanisms. Clearly, we need to continue building up the
PROTÉGÉ-II library, and to solve a wider range of problems. Nevertheless, we have
demonstrated that PROTÉGÉ-II has the potential to allow knowledge engineers to reach one of
their most desired goals: to engineer knowledge rather than software.

Acknowledgments

This work has been supported in part by grant LM05157 from the National Library of Medicine,
by grant HS06330 from the Agency for Health Care Policy and Research, and by a gift from

10

Digital Equipment Corporation. Computer support was provided in part by the CAMIS resource,
supported by grant LM05305 from the National Library of Medicine.

We thank John Egar for preparing the artwork, and Lyn Dupré for editing a previous version of
this document. We recognize the contributions of John Egar, Henrik Eriksson, and Yuval Shahar
to the architecture of PROTÉGÉ-II.

References

Bennett, J. S. (1985). ROGET: A knowledge-based system for acquiring the conceptual structure
of a diagnostic expert system. Journal of Automated Reasoning, 1, 49–74.

Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, 27, 289–350.

Chandrasekaran, B. (1986). Generic tasks for knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Expert 1, 23–30.

Egar, J.W., Puerta, A.R., and Musen, M.A. (In press). Graph-grammar assistance for modeling of
decisions. In Proceedings of the Seventh Banff Knowledge-Acquisition for Knowledge-
Based Systems Workshop, Boose, J. H., and Gaines, B. R., editors. Banff, Alberta, Canada.

Friedland, P. E., and Iwasaki, Y. (1985). The concept and implementation of skeletal plans. Journal
of Automated Reasoning, 1, 161–208.

Klinker, G., Bhola, C., Dallemagne, G., Marques, D., and McDermott, J. (1991). Usable and
reusable programming constructs. Knowledge Acquisition, 3, 117–135.

Marcus, S. and McDermott, J. (1989). SALT: A knowledge acquisition tool for propose-and-revise
systems. Artificial Intelligence, 39, 1–37.

Marques, D., Dallemagne, G., Klinker, G., McDermott, J., and Tung, D. (1992). Easy
programming: Empowering people to build their own applications. IEEE Expert, 7(3), 16–
29.

McDermott, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods. In
Automating Knowledge Acquisition for Expert Systems, Marcus S., editor, pp. 225–256.
Boston: Kluwer Academic.

Musen, M.A. (1989). Automated Generation of Model-Based Knowledge-Acquisition Tools.
London: Pitman.

Nii, H.P. (1986). Blackboard systems: The blackboard model of problem solving and the evolution
of blackboard architectures. AI Magazine, 7(2), 38–53.

Puerta, A.R., Egar, J.W., and Musen, M.A. (1991). Automated Generation of Adaptable
Knowledge-Acquisition Tools with Mecano. Report No. KSL–91–62, Knowledge Systems
Laboratory, Stanford University, October 1991.

Puerta, A.R., Egar, J.W., Tu, S.W., and Musen, M.A. (1992). A multiple-method knowledge-
acquisition shell for the automatic generation of knowledge-acquisition tools. Knowledge
Acquisition, 4, 171–196.

Steels, L. (1990). Components of expertise. AI Magazine 11(2), 30–49.

Tu, S.W., Shahar, Y., Dawes, J., Winkles, J., Puerta, A.R., and Musen, M.A. (1992). A problem-
solving model for episodic skeletal-plan refinement. Knowledge Acquisition, 4, 197–216.

