
U-TEL: A Tool for Eliciting User Task Models
from Domain Experts

R. Chung-Man Tam
Stanford University

251 Campus Drive - MSOB x215
Stanford, CA 94305-5479 USA

+1 415 723 5294
rtam@cs.stanford.edu

David Maulsby
Aurelium Inc.

430, 820 – 89 Av. SW
Calgary T2V 4N9 Canada

+1 403 252 2139
maulsby@aurelium.com
http://www.aurelium.com

Angel R. Puerta
Stanford University

251 Campus Drive - MSOB x215
Stanford, CA 94305-5479 USA

+1 415 723 5294
puerta@smi.stanford.edu

http://smi.stanford.edu/people/puerta

ABSTRACT
Eliciting user-task models is a thorny problem in model-
based user interface design, and communicating domain-
specific knowledge from an expert to a knowledge engineer
is a continuing problem in knowledge acquisition.

We devised a task elicitation method that capitalizes on a
domain expert’s ability to describe a task in plain English,
and on a knowledge engineer’s skills to formalize it. The
method bridges the gap between the two by helping the
expert refine the description and by giving the engineer
clues to its structure.

We implemented and evaluated an interactive tool called
the User-Task Elicitation Tool (U-TEL) to elicit user-task
models from domain experts based on our methodology.
Via direct manipulation, U-TEL provides capabilities for
word processing, keyword classification, and outline
refinement. By using U-TEL, domain experts can refine a
textual specification of a user task into a basic user-task
model suitable for use in model-based interface
development environments.

Our evaluation shows that U-TEL can be used effectively
by domain experts with or without a background in
programming or interface modeling, and that the tool can
be a key element in promoting user-centered interface
design in model-based systems.

Keywords
User-centered design, model-based user interface design,
task models, knowledge elicitation

INTRODUCTION
In this paper, we present and evaluate a tool for eliciting
informal user-task models from domain experts, in order to
guide the design of a user interface. These models are

formalized by a knowledge engineer and entered into the
MOBI-D model-based user interface development
environment [2]. The tool offers a possible solution to the
problem of designing user-centered domain-specific user
interfaces.

Model-based interface development [2] relies upon
explicitly representing user-task and general design
knowledge to guide the design of a user interface. Although
there is increased evidence that user-task models are
effective in driving a user-centered design approach [2,5],
interface designers are having trouble identifying and
understanding the target domain’s tasks. These difficulties
arise from the fact that interface designers are not experts in
the target domain. Therefore, they cannot build interfaces
that suit fully the needs of the end users in that domain.

On the other hand, domain experts are typically not
interface designers. Therefore, they cannot develop a user
interface using tools currently available. Interface design is
a complex process involving organization and management
of concepts at multiple levels of abstraction, some of which
mean nothing to a domain expert.

Figure 1. User Task Elicitation Tool. An example in the
domain of visualization of temporal medical data is shown.

To address this problem, we built a prototype software tool
that enables a domain expert to outline informal user-task
models that an engineer can formalize using a model editor
such as MOBI-D. The informal and formal models may
then be used in conjunction to guide the user interface
designer. Our goal is to make it possible for these three
experts to communicate with one another effectively.
Although there are a number of software tools built for task
or workflow analysis, they are rarely aimed at domain
experts and none can be used in an integrated fashion with
a model-based interface development environment.

Our approach to eliciting task knowledge from domain
experts to interface designers supplements or even replaces
observational studies and ad hoc interviews with a
structured yet flexible elicitation centered on sample
scenarios. The methodology allows for domain experts to
complete the elicitation process by themselves or by being
aided by a facilitator, or interviewer. The elicitation begins
with the domain expert recounting one or more examples of
performing a task, and transcribing these examples into a
text editor. The expert then refines these descriptions by
performing three operations using U-TEL, illustrated in
Figure 1. First, the expert identifies and classifies task
terminology, in particular terms for objects, actions and
actors involved in the task. The expert accomplishes this by
selecting text and choosing its classification from a popup
menu. The facilitator may prompt the expert by pointing at
some phrase. Classified terms are highlighted and copied
automatically to the appropriate on-screen list. Second, the
scenario text is copied to an outline editor, where the expert
segments it and organizes it to bring out task structure,
putting each action on a separate line, and indenting and
inserting headings to delimit subtasks. The facilitator may
suggest groupings or headings. Third, the expert annotates
subtask headings, using a popup menu to indicate whether
actions need to be done in order, may be interleaved, or are
conditional upon some event.

The output of this elicitation comprises: a) the original task
scenarios; b) three lists of classified terms (objects, actions,
actors); and c) an outline of the task that expresses its
hierarchical decomposition and sequencing. Classified
terms are highlighted in both the scenarios and outline. The
outline and lists of terms are not intended to be a formal
task model. Instead, they constitute a guide to the
knowledge engineer, whose job is to eliminate ambiguities
in the terminology, fill in missing details of actions, and
further rationalize the task structure, in consultation with
the domain expert. The knowledge engineer edits the task
and data models using MOBI-D tools, which provide a
formal language that helps the engineer think about task
models in operational terms, that is, in terms of computer
inputs, outputs, and knowledge representations.

In this paper, we first discuss the relationship between
knowledge acquisition and model-based user interface

design. We then describe our explorations of our elicitation
method at two levels. At the first level, we employ Wizard-
of-Oz simulations of an intelligent agent that suggests user-
task model elements in order to guide the elicitation. At the
second level, we partially implement the intelligent agent of
our Wizard-of-Oz studies via the tool shown in Figure 1.
We present a report of its evaluation and of its use by
domain experts to model a rather complex task for which
they desire computer support. Finally, we assess the utility
of our method and of U-TEL, suggesting avenues for
further research and development.

ACQUIRING DESIGN KNOWLEDGE
There has been considerable progress in the field of model-
based interface development in recent years [2]. A number
of systems have been implemented and have been
successful at showing the potential of the model-based
paradigm. Some of the well-known systems include
ADEPT [5], HUMANOID [4], and Mecano [3]. However,
none of the available model-based systems has
implemented an effective process for eliciting user task
models from domain experts, a key requirement for user-
interface design. Some systems, including HUMANOID
and Mecano, do not even have representations for user
tasks in their interface models. Those that do so, like
ADEPT, do not include tool support for user-task elicitation
from domain experts.

Conversely, the field of knowledge acquisition has studied
for a long time issues of identification, classification, and
structure of knowledge terms. However, no tool support
exists for the elicitation of user-task models for the explicit
purpose of driving interface design. U-TEL will combine
the progress made in modeling interface design knowledge
with that of knowledge elicitation techniques in order to
bridge a noticeable gap in the development cycle of model-
based systems.

WIZARD OF OZ SIMULATIONS
We first tested our approach to refining informal
descriptions in a Wizard-of-Oz experiment [1]. A
researcher simulated an elicitation tool that follows the
protocol outlined in the Introduction, but that provides
“intelligent” assistance by suggesting transformations to the
domain expert’s description. These suggestions serve as
examples to the user, and incidentally automate the
elicitation. The experiment was conducted via email with
four subjects, all of whom were asked to describe the same
task—doing the laundry. We collected their email
exchanges with the Wizard and their comments on the
process.

Here is a typical description of the task:

First you sort the laundry into whites, colors and
permanent press. You wash each load separately. Add the
detergent to the washing machine and pile the clothes in
loosely. If the load is whites, set the temperature to hot. If

bright colors, set the temperature to cold; otherwise warm.
For permanent press or delicate items, set the speed to
slow, otherwise regular. Set the number of wash/rinse
cycles you want (more for grubby whites!). Push in the dial
to start the machine. Then wait. When the machine beeps,
it's done, and you can remove the clothes. Hang permanent
press and delicates to dry, but put the rest in the dryer,
setting the temperature as recommended on clothing labels.

The Wizard of Oz parsed the subject’s initial description
for non-function words (in particular, nouns and verbs) and
suggested a domain terminology. For instance:

re. objects: laundry, whites, colors, permanent press, load,
detergent, machine, pile, clothes, temperature, hot, etc.

re. actions: sort, wash, load separately, add, pile, loosely,
set, wash, rinse, push, start, wait, beeps, remove, hang, etc.

re. actors: you

The subject could add or remove items. In both this and our
user study of the elicitation tool, we found that subjects
were “unclear” about what constitutes an action, sometimes
selecting a verb, sometimes an entire sentence. But we do
not wish to require such “clarity” of our domain experts:
that is the knowledge engineer’s job.

In the next round, the Wizard parsed the description for
sentence breaks and verb clauses, to identify the steps of
the task:

1) First you sort the laundry into whites, colors, etc.
2) You wash each load separately.
3) Add the detergent to the washing machine
4) and pile the clothes in loosely.
etc.

The subject was asked to critique this breakdown and
rearrange the lines as appropriate. In general, subjects
found this process easy and the researcher who reviewed
their work considered the breakdown to be accurate.
Subjects who were programmers spent more time on this
than did non-programmers.

In the fourth round, the Wizard rearranged the line-by-line
breakdown into a task-subtask hierarchy with conditionals.
Since our Wizard was not supposed to have domain
knowledge, it performed only a trivial task decomposition,
by making a heading for the task as a whole:

Task: Do the Laundry
Subtasks:
1) First you sort the laundry into whites, colors, etc.
The subject was free to insert new headings and to group
actions into subtasks. As an example, the Wizard showed
them a decomposition of the “Grocery shopping” task.
Non-programmers had difficulty with this step because they
did not know where to begin. Programmers produced
reasonable decompositions.

In the final round, the Wizard annotated the subject’s task
outline with sequencing information. By default, actions
were assumed to be unordered. Keywords like “first”,
“then” and “after” alerted the Wizard to sequences:

Subtask: Washing
Do the following in order:
1) First you sort the laundry into whites, colors, etc.
2) If the load is whites, then

4a) set the temperature to hot
4b) Otherwise ??

3) If bright colors, then
5a) set the temperature to cold
5b) Otherwise warm.

etc.

All subjects had difficulty with this step. Non-programmers
did not know where to begin, and programmers struggled
with it. We conclude that a different form of dialog is
needed, such as asking the domain expert whether a given
set of actions must be done in order.

In general, subjects performed well correcting the Wizard’s
suggestions. Providing examples of task structure helped
tremendously: where examples were perfunctory, our
instructions failed to help users. The gradual refinement
process broke the task description problem into
transformations that users could manage and that a system
could feasibly automate.

For our implementation, we chose a subset of the
functionality simulated in the Wizard of Oz experiment.
We adopted a purely user-driven approach so that we could
test whether this was adequate before we attempted the
implementation of a complex system.

THE USER-TASK ELICITATION TOOL (U-TEL)
Figure 1 illustrates the user-task elicitation tool that we
implemented. The upper left window contains the text of
the user’s initial task description. Below it is an outline
editor in which the user organizes the description into steps
and subtask hierarchies. To indicate sequencing, the user
selects a subtask node and chooses one of the following
options from a popup menu:

• Steps must be done in sequence
• Steps may be done in any order
• Subtask may be repeated

Note that the “repeated” annotation may be given in
addition to one of the other two. Other forms of control
flow, such as interleaving, were not provided because we
felt that users might not understand them.

The three windows at the right contain lists of domain
terms for objects, actions, and actors. Each list is
hierarchical, but the tool does not indicate whether a
hierarchy stands for taxonomy (“is-a”) or containment
(“part whole”). During preliminary design studies, we
found that some users wanted a hierarchy, but that in

practice they did not distinguish between these two
semantics. Our policy is to avoid imposing knowledge-
engineering distinctions upon domain experts, so we let
them use the hierarchy however they wish, and even
inconsistently. To classify a word or phrase, the user selects
it in the text or outline view and chooses “thing”, “action”,
or “user” from a popup menu. All occurrences of that text
in both views are highlighted accordingly. The user may
classify a given piece of text under more than one category.

At the end of the session, the system can store the results of
the elicitation into a declarative knowledge representation
understandable by the MOBI-D tools. This representation is
dictated by the MOBI-D interface modeling language and it
stores the elements of the elicitation into the appropriate
components of an interface model. Thus, the outline
becomes a user-task model; the list of objects a domain
model; and the list of users, a user model. These models, of
course, are just skeletons and need refinement and
specification, via MOBI-D tools, by a knowledge engineer
or interface designer.

USER STUDIES ON U-TEL
To evaluate U-TEL, we conducted user studies with a
balanced group of eight subjects. The subjects included
males, females, programmers and non-programmers. Each
subject received basic training in the use of U-TEL and
then completed an outline for each of two standard tasks.
We subdivided each task into steps similar to those of the
Wizard-of-Oz simulations. We then measured the time for
completion of each step, assessed the difficulty of each step
on a discrete scale, and recorded the verbal comments from
each user.

Remarkably, programmers and non-programmers needed
similar amounts of time to finish the tasks. Whereas
programmers were able to quickly classify terms (as
opposed to non-programmers), they spent considerably
more time in refining the outline than non-programmers,
thus balancing the total time needed. All subjects agreed on
the level of difficulty of each step and none marked any
step as difficult. Comments from users indicated the need
for providing various drag-and-drop operations in the
outline window, as well as identified the need for using tree
hierarchies for the lists of objects, things, and users (these
lists were flat originally).

ELICITING A USER-TASK MODEL FOR A
MEDICAL INTERFACE
The example shown in Figure 1 is for a user interface to
visualize temporal data in the medical domain. The typical
use of the elicitation tool is to obtain user-task outlines
from more than one domain expert. In this case, we ran
sessions with two physicians. One has programming
experience and is an expert in temporal data abstractions.
The second one is an expert in the field of diabetes (which
requires considerable temporal data visualization) but has
no programming experience. The example shown is for the

expert with programming experience.

In this case, the programmer expert was able to produce a
useful and detailed outline of the user-task model.
However, the terminology used by this expert was very
abstract and resulted in a labeling of interface elements that
was not comfortable to end users. The non-programmer
expert, however, while not producing as detailed an outline,
did supply a terminology that was much more acceptable to
end users. The job of reconciling these examples and
selecting the best features of each fell on the interface
designer. This illustrates how the user elicitation tool helps
the interface design process by adding a structured channel
of communication between domain experts and interface
designers.

FURTHER WORK
There are two areas of potential improvements to U-TEL:
intelligent assistance and graphical editing capabilities. We
plan to add some of the intelligent parsing and advice
functions tested in our Wizard-of Oz studies. We will do so
in an incremental fashion and as dictated by our continuing
evaluation by end users. We are also planning to address
one fundamental limitation, that is the lack of facilities to
describe a task diagrammatically instead of by text outline.

CONCLUSION
We have developed a methodology for eliciting models of
user tasks from domain experts and implemented tool
support for that methodology. Our user-task elicitation tool
allows domain experts to refine a textual description of a
task into a structured outline. The results of the elicitation
sessions can be used directly in a model-based interface
development environment to build interface models from a
user-centered point of view.

Our tool structures and supports the difficult step of
defining user-task models while increasing the usefulness
and acceptability of model-based systems.

ACKNOWLEDGMENTS
The work on MOBI-D is supported by DARPA under
contract N66001-96-C-8525. We thank Eric Cheng, Jacob
Eisenstein, Kjetil Larsen, and Justin Min for their work on
the development of MOBI-D.

REFERENCES
1. Hix, D., Hartson, H. Developing User Interfaces.

Ensuring Usability through Product and Process. New
York: John Wiley & Sons, 1993.

2. Puerta, A.R. A Model-Based Interface Development
Environment, IEEE Software, July/August 1997, pp.
40-47.

3. Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A.
Beyond Data Models for Automated User Interface
Generation, in Proc. of HCI'94, pp. 353-366.

4. Szekely, P., Luo, P., Neches, R. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design, in Proceedings
of CHI’92, pp. 507-514.

5. Wilson, S., Johnson, P., Kelly, C., Cunningham, J.,
Markopoulos, P. Beyond Hacking: a Model Based
Approach to User Interface Design, in Proc. of HCI'93,
pp. 217- 231.

