
Towards a General Computational Framework for
Model-Based Interface Development Systems

Angel Puerta and Jacob Eisenstein
Stanford University

251 Campus Drive – MSOB x215
Stanford, CA 94305-5479 USA

puerta@smi.stanford.edu, jacob1@leland.stanford.edu,
http://www.smi.stanford.edu/projects/mecano

ABSTRACT
Model-based interface development systems have not been
able to progress beyond producing narrowly focused
interface designs of restricted applicability. We identify a
level-of-abstraction mismatch in interface models, which
we call the mapping problem, as the cause of the
limitations in the usefulness of model-based systems. We
propose a general computational framework for solving the
mapping problem in model-based systems. We show an
implementation of the framework within the MOBI-D
(Model-Based Interface Designer) interface development
environment. The MOBI-D approach to solving the
mapping problem enables for the first time with model-
based technology the design of a wide variety of types of
user interfaces.

Keywords
Model-based interface development, interface models,
knowledge-based user interface design, user interface
development tools

INTRODUCTION
Model-based systems for user interface development [7]
exploit the idea of using a declarative interface model to
drive the interface development process. An interface
model represents all the relevant aspects of a user interface
in some type of interface modeling language. Model-based
systems provide the software tools that build and refine the
interface model to produce a user interface. Objects
typically included in a comprehensive interface model are
user tasks, domain elements, users, presentation items, and
dialog structures. Because of the nature of the objects in an
interface model, model-based systems suffer from a
challenging level-of-abstraction problem. On one hand,
there are purely abstract units in an interface model, such
as a user task (e.g., “get customer’s name”). On the other

hand, there are very concrete units, such as scrollbars and
pushbuttons, which are part of an interface presentation.

The development cycle of model-based systems normally
starts by building an abstract model. This can take the
form of a user-task model, a domain model, or an
integration of both. The tools in model-based systems then
attempt to produce automatically a concrete interface
design (i.e., a presentation and dialog) from the abstract
representation. Researchers have found limited success
with this approach. Some model-based systems have
proven reasonably effective in narrow target application
domains including, for example, automatic generation of
forms, or automatic generation of dialog boxes for
database access [2, 5]. However, no technique has been
shown to be applicable at a general level. The main reason
for this shortcoming is that we do not have a general
computational framework to bridge the abstract-to-
concrete gap in interface models. We lack an
understanding of what features and attributes of the
abstract elements in an interface model are relevant in
creating a link to the concrete elements in that model. We
call the problem of linking abstract and concrete elements
in an interface model the mapping problem. Solving the
mapping problem in a general sense is essential for the
construction of model-based systems of wide applicability
in user interface design.

In this paper, we present an initial general solution to the
mapping problem in model-based interface development.
We identify salient features in abstract elements of an
interface model and discuss its potential in determining
mappings to concrete elements. We also identify the most
important types of mappings in user interface design and
describe the variables that can affect the decision of
mapping one object to another in an interface model. We
have found that the mapping problem in model-based
systems defies automation because of the number of
variables that can impact each possible mapping. Instead
of automation, we propose that model-based systems
provide tools that allow developers to interactively set the
mappings. The tools should assist the developer in pruning
the design space of potential mappings into a manageable

set. Finally, we present a set of prototype tools that support
interactive mapping of abstract to concrete objects in an
interface model within the MOBI-D (Model-Based
Interface Designer) development environment [7]. Our
general strategy for attacking the mapping problem
enables MOBI-D to target a wide range of application
domains and user-interface types.

INTERFACE MODELS
An interface model is an ordered collection of all the
relevant elements of a user interface. Interface models are
declarative and are written in an interface modeling
language. The elements of an interface model are grouped
into model components. The basic components are the
user-task model, the user model, the domain model, the
presentation model, and the dialog model. Interface
models are referred to as partial models if they include just
some of the basic components and as comprehensive
models if they include all of the basic components. A brief
synopsis of each of the components is as follows:

• User-task model. A user-task model is a description of
the task to be accomplished by the user of an
application through the application’s user interface.
Individual elements in the user-task model represent
specific actions that the user may undertake.
Information regarding subtask ordering (e.g.,
sequence, unordered, optional sequencing) as well as
conditions on task execution is also included in this
model.

• Domain model. A domain model defines the objects
that a user can view, access, and manipulate through a
user interface. In nature, it is very similar to an
application’s data model but it is also intended to
explicitly represent the attributes of objects and the
relationships among the various domain objects.
Therefore, domain models are more ontological in
essence than data models.

• User model. A user model represents the different
types of users of a target application. It is not a
cognitive model but a definition of the attributes and
roles of users.

• Presentation model. The presentation model is a
representation of the visual, haptic, and auditory
elements that a user interface offers to its users. For
example, a presentation element might be a window
that contains additional elements such as widgets that
appear in that window. The presentation model also
includes presentation attributes, such as font styles
and orientation of button groups. On its own, the
presentation model is only a static collection of
sensory elements.

• Dialog model. The dialog model defines the way in
which the presentation model interacts with the user.
It represents the actions that a user may initiate via the

presentation elements and the reactions that the
application communicates via those same elements.

THE MAPPING PROBLEM
The main function of a model-based interface development
system is to provide the software tools that allow
developers to construct user interfaces by means of
creating and refining an interface model. In general terms,
developers use model-based systems to first define one or
more of a user-task model, a domain model, and a user
model. The model-based systems then attempt to generate
from those model-components presentation and dialog
models that are then converted into an executable interface
specification (i.e., a running user interface). A knowledge-
based process supports the generation of the user interface.

The success of model-based systems has been limited. On
one hand, there are systems that can generate specific-type
interfaces (e.g., form-based interfaces, database interfaces)
[2, 5] with a high degree of automation. On the other
hand, none of the knowledge-based approaches for
interface generation used by model-based systems is
applicable beyond its intended narrow target domain nor
can they be generalized to other targets. Furthermore,
interfaces produced by these systems look all fairly similar
and developers have little flexibility to change them in any
of its fundamental aspects.

Domain Model
Presentation Model

User Task Model
Dialog Model

Figure 1. The mapping problem in interface models.

To understand the roots of these limitations, it is necessary
to study the nature of interface models. For the purpose of
our discussion, we will divide the components and
elements of an interface model into abstract and concrete
categories. We call concrete those elements of a running
user interface that a user can access directly. Thus,
windows, push buttons, mouse clicks, and audio are
concrete elements. In an interface model, concrete
elements can be found in the presentation and dialog
model components. In contrast, we call abstract those
elements of a running user interface that the user can
access only indirectly, or not at all. Thus, user tasks and
data objects are abstract elements. In an interface model,
abstract elements can be found in the user-task, domain,
and user model components. Note that the distinction is
somewhat arbitrary. If a text field widget in a user
interface displays the value of a data object (e.g., a string

value) we say that the user has direct access to the text
field widget but indirect access to the data object.

Under the abstract/concrete point of view, the process of
generating a user interface in a model-based system can be
seen as that of finding a concrete specification given an
abstract one. For example, given user-task t in domain d
find an appropriate presentation p and dialog D that allows
user u to accomplish t. Therefore, the goal of a model-
based system in such a case is to link t, d, and u with an
appropriate p and D. We call this challenge of linking the
abstract and concrete elements the mapping problem in
model-based systems, as depicted in Figure 1.
Furthermore, we claim that the limitations of model-based
systems are due to the lack of a general solution to the
mapping problem for all interfaces, or at least to the lack
of availability of a general framework to search for
solutions to the mapping problem for individual interfaces.

Model-based systems that generate specific-type interfaces
in essence embed into their knowledge-based approach a
single way, or single method, of mapping abstract to
concrete elements. Clearly, any user interface design that
requires a set of mappings that cannot be produced by that
single method is therefore unrealizable. However, the
challenge of developing general, or multiple, mapping
methods is considerable given the level-of-abstraction
mismatch in interface models. This difficulty has led some
researchers to determine that the future of model-based
systems is simply to target specific-type interfaces [9]. We
will show here, however, that a general framework for
mapping can be developed and supported via software
tools in a model-based system. With such a framework,
developers are able to design a multitude of types of user
interfaces.

TYPES OF MAPPINGS
Before deciding what type of software tools can best
support solving the mapping problem, it is important to
analyze whether there are certain types of mappings
among the elements in an interface model that have
particular importance. Clearly, if for a given user interface
design it is potentially meaningful to map any abstract
interface model element to any concrete one, then we
would probably be facing a nearly insurmountable
computational problem. Fortunately, the intrinsic nature of
each interface model component determines to a large
extent the kind of mappings that are possible to and from
that component. In this section, we identify the most
important types of mappings in model-based interface
design.

Task-Dialog Mappings
Earlier, we described user-task models as an ordered
collection of elements representing user tasks. User task
models are typically arranged into hierarchical
task/subtask decompositions. Groups of tasks can be

arranged by order of execution (e.g., sequential, parallel).
Conditions can be attached to the execution of tasks and
input/output requirements can be specified for any task or
subtask. Therefore, user-task models provide two types of
information about tasks: structural and procedural.

Dialog models define the conversation between users and
the interface. These models establish a navigation schema,
define what are the accepted user actions, and determine
what interaction techniques are applicable in each instance
of a user action. Therefore, dialogs are procedural in
nature. This establishes a parallelism with the user-task
model and hints at potential mappings between the two
model components. Some of the potential mappings are (1)
task execution-order to navigation order, (2) conditions on
task execution to enable/disable states in the dialog, and
(3) input/output requirements for tasks to input/output
requirements for command execution.

Task-Presentation Mappings
A presentation model defines the parts of a user-interface
presentation as well as the arrangement and grouping of
those parts. As such, it is structural in nature and suggests
possible mappings to the structure of user tasks. In
particular, task/subtask decompositions should map (likely
not one-to-one) to part/subpart hierarchies in a
presentation. In addition, subtask groupings in the user-
task model should map to subpart groupings in the
presentation model. An example of this would be the
assignment of a task group to a window where a user can
complete all the subtasks included in the group.

Domain-Presentation Mappings
Elements in a domain model possess attributes that are
often relevant to presentation element selection. Clearly,
the nature of a domain object is the determining factor in
how to present and make that object available to a user in
an interface. A domain object typically possesses a number
of attributes, including a data type. This suggests that the
mappings between a domain model and a presentation
model are essential in any user interface design. The
mappings establish, for example, what widget should be
used to display the value of an integer-type object. Not
only the associated data type may influence this selection
but also other attributes such as range, or minimum and
maximum values can play a role.

Task-User Mappings
So far we have looked at mappings across levels of
abstraction but mappings restricted to just the abstract or
just the concrete levels in an interface model are also
possible. A user model may specify a number of types of
users of the target interface. Each user may be involved in
all tasks in a user-task model, or just in a subset of these
tasks. The assignment of users to tasks is a mapping
process. If two or more types of users are assigned to the
same subgroup of tasks, this has a multiplier effect on the

mappings to presentations and dialogs from task and
domain models. In effect, each user may require a different
presentation and dialog and appropriate mappings should
be established between the abstract and concrete levels in
the interface model to account for those requirements.

Task-Domain Mappings
 An interface model must also define what objects are
involved in the completion of the tasks represented in its
user-task model component. Thus, it is necessary to map
objects to tasks in an interface model. The assignment of
objects to tasks has an integration effect on the mappings
between the presentation and dialog model components as
discussed next.

Presentation-Dialog Mappings
Clearly, the presentation elements and the dialog elements
in an interface model must be linked to each other to
specify a running user interface. As we discussed, there are
important links between tasks and dialogs and between
domains and presentations. Naturally, we should expect
that the mapping of domain objects to tasks would
influence how the presentation and dialog elements are
mapped among themselves. In general, we would expect
that presentation-dialog mappings parallel the
corresponding task-domain mappings.

AUTOMATION ISSUES
To achieve an automated general solution to the mapping
problem, it would be necessary to first identify all the
variables that affect the setting of the various types of
mappings. If we then are able to quantify or qualify these
variables, it might be possible to implement knowledge-
based approaches that solve the mapping problem for each
instance of design of a user interface.

Unfortunately, it does not appear that we are able to satisfy
the prerequisites named above. Mappings in an interface
model are affected by the same basic factors that affect the
design of user interfaces. Therefore, many of these factors
are intangible and resist a computational implementation.
Foremost among these factors are human creativity and
artistic qualities. An interface layout design can be as
much an expression of the visual artistic capabilities of a
designer as it is a rational selection of widgets based on
data type definitions.

Even when a purely rational approach is used, developers
can face a multitude of choices for each mapping to be set.
There might be several widgets in a toolkit library that
would be effective to display a domain object, or there
might be numerous ways of distributing tasks among
windows, or there might be different ways to group
widgets in a window, and so on.

The approach of model-based systems for specific-type
interfaces has been to remove all issues of creativity and
art from the mapping process, and to severely limit the

choices that can be made in a rational manner. It is not
surprising then that the interfaces produced by these
systems are restricted to one look and feel, and to one
design pattern. And it is even less surprising that the
methodology for interface generation used in these model-
based systems cannot be generalized since it does not
account for a majority of the factors that affect mapping.

The ideal approach to automate the solutions to the
mapping problem would be one that supported the choices
of rational interface design as well as the creativity of
artistic interface design.

THE MOBI-D APPROACH
MOBI-D (Model-Based Interface Designer) is a general-
purpose model-based interface development environment.
It supports the definition and refinement of comprehensive
interface models via a number of software tools including
model editors, task-based interface builders, user-task
elicitation tools, and knowledge-based design assistants.
The functionality of MOBI-D and its development cycle
are described elsewhere [6, 7]. In this paper, we will
concentrate on describing the solution to the mapping
problem implemented by MOBI-D.

The approach of MOBI-D is not to embed into the system
any particular method of setting the mappings. Instead,
MOBI-D allows interface developers to directly access and
set the mappings according to their needs. It can also
provide knowledge-based assistance to developers in
setting the mappings. The goal is to provide a general
computational framework that supports a rational
approach to solve the mapping problem for individual
interface designs without limiting the freedom that
interface designers need to explore design options.

In order to support the inspection and setting of mappings,
MOBI-D extends the definition of an interface model to
include a new model component called the design model.
A design model is a declarative representation of all the
mappings in a user interface. In the same manner that
having declarative representations of user-tasks, domains
and so forth enables the construction of supporting
software tools, so it does the design model. MOBI-D
includes tools for direct manipulation of mappings and for
knowledge-based assistance in setting mappings. We will
examine here two of the tools: a design model editor and
an intelligent mapping assistant.

Design Model Editor
Figure 2 shows the design model editor in MOBI-D. In the
left pane, developers can inspect the entire contents of
each basic model component in the MOBI-D interface
model (i.e., user-task, domain, user, presentation, and
dialog). In the right pane, developers can view the current

mappings for a selected element on the left pane. The tool
is designed for maximum freedom. To set a mapping, a
developer simply drags an element of any of the model
components and drops it onto the intended target element.
The semantics of establishing a mapping are dependent on
the type of elements involved. For example, mapping a
user type to a user task means such user type performs the
target user task. In contrast, mapping a domain object to a
user task means that such object is used in performing the
target user task. Developers can annotate and further
specify the nature of a mapping.

TIMM: The Interface Model Mapper
The design model editor is effective in allowing developers
to set any type of mappings they wish to set. However, it
provides no guidance in how to set mappings. Typically,
developers use the design model editor to set same-level-
of-abstraction mappings (e.g., users to user-tasks and
domain objects to user tasks). For the more complex
abstract-to-concrete mappings, MOBI-D provides a
decision-support tool called TIMM (The Interface Model
Mapper).

In the process of building user interfaces with MOBI-D,
developers first define user-task, domain, and user models
for the target interface. These models are integrated via
mappings done in the design model editor. At the time of
deciding what presentation and dialogs should be used

given the integrated model built, developers are faced with
a myriad of options in mapping from the abstract level to
the concrete level in the interface model. The role of
TIMM, as depicted in Figure 3, is to assist developers in
navigating the design space of abstract-to-concrete
mappings. TIMM can prune the design space of mappings
down to a manageable set that the developer can then
explore to make final decisions. The types of mappings
that TIMM currently supports are domain-to-presentation,
task-to-dialog, and task-to-presentation.

User Tasks
Windows and Widgets

Interface
Developer

Knowledge
Bases

 TIMM

Figure 3. A role of the Interface Model Mapper (TIMM).

Figure 2. The MOBI-D design model editor.

Figure 4. Domain-to-Presentation mappings in TIMM

Figure 4 shows the TIMM facility to inspect and set
domain-to-presentation mappings. The lower left pane is a
view of the domain model while the center pane is a list of
presentation elements (called interactors in MOBI-D). By
selecting an object in the domain model, developers can
view and modify what interactors are appropriate to
display and access that particular domain object. TIMM
uses a knowledge base of interface design guidelines to
examine the attributes of a domain object and build a list
of potential interactors. The interactors in the list may be
arranged in order of priority, that is how desirable is it to
use one interactor versus another given the current set of
interface design guidelines.

Because of the special role of the data type attribute in
determining domain-to-presentation mappings, TIMM
provides a view (upper left pane) to inspect and modify
global mappings between data types an interactors. A
change in one of these mappings affects the list of
potential interactors for all objects in the domain model of
that data type. Developers are free to set their own
mappings or to accept the mappings created by TIMM.
Advanced users of TIMM can also access and modify the
knowledge base of interface design guidelines. In this
manner, TIMM affords complete freedom to developers to
sets the mappings but can also reduce the design
possibilities to reasonably sized set that developers can
deal with effectively.

Figure 5 shows the TIMM facility to inspect and set task-
to-dialog and task-to-presentation mappings. Item on this
panel are either structural (task-to-presentation) or
procedural (task-to-dialog) in nature. An example of a
procedural item is the sequence enforcement setting. In a
user-task model a group of subtasks may be specified as a
sequence. But at the user interface level, the sequencing
can be enforced in several ways For example, in a
sequence of n tasks the interface may hide completely the
areas for completion of subtasks 2-n until the user
completes subtask 1. Alternatively, the interface may leave
visible but disable the areas for subtasks 2-n. A third
option could be to enable all areas but to display an error
message if a subtask is left out. Using TIMM, a developer

can specify what global strategy to follow to set task-to-
dialog mappings for task execution.

An example of a structural item is the setting for “number
of windows”. Given a user-task model, which is a
task/subtask decomposition, there are multiple options as
to how to split those tasks among, say, windows in a user
interface. User-task models in MOBI-D are tree structures
with varying levels of depth. The slider present in TIMM
to adjust the number of windows has discrete values
matching the depth level of the current user-task model
tree. Using the slider, developers set a strategy for dealing
with task-to-presentation mappings for grouping in an
interface model.

Figure 5. Mappings from tasks to dialogs and
presentations in TIMM.

Once developers finish working with TIMM, they move to
a different MOBI-D tool to complete their interface design.
This tool is a task-based interface builder similar to
commercial interface builders but customized for each
particular interface design according to the sets of
mappings and the strategies developed in TIMM [7].
Using this tool, developers make the final design decisions
and set the concrete-to-concrete mappings between design
and presentation.

As it can be seen, the tools in MOBI-D allow developers to
first set abstract-to-abstract mappings, then assist in
jumping from the abstract to the concrete levels, and
finally direct the setting of concrete-to-concrete mappings.
The result is the ability of developers to undertake a wide
variety of interface designs in MOBI-D.

SAMPLE INTERFACES
Figure 6 shows one of the screens of an interface for
logistics activities (e.g., reviewing stocks, requesting
shipments, and planning levels of supplies) in a military
theater of operations. The interface adapts its views to
users of different ranks and modifies its dialog and
sequencing according to changes in situation changes
(e.g., bad weather delaying a shipment). Up until now, this
type of interface design was out of the reach of model-
based systems. It has multiple presentation modalities,
complex widgets (e.g., 3-D viewers, and interactive maps),

and support complicated tasks. However, with MOBI-D
this type of design is enabled thanks to the ability to freely
map the abstract elements of the interface model with the
concrete ones.

RELATED WORK
Over the years, there have been a number of model-based
systems built. Here we introduce some of the most relevant
ones. In general, these systems share these limitations
when compared to MOBI-D: (1) focus on automatic
generation of interfaces and therefore in a single mapping
method, (2) failure to represent mappings as declarative
elements of the interface model, (3) lack of interactive
tools that allow developers to explicitly inspect and set
mappings. As a result of these limitations, these systems
are restricted to specific-type interface designs and fail to
solve in any general sense the mapping problem.

UIDE [1] is one of the first model-based systems to be
built. It included a partial interface model where
presentations were generated from data models. An
algorithm assigned data types to widgets and laid them out
on a canvas. Therefore, UIDE dealt mainly with domain-
to-presentation mappings and did so in an automated way.
Another system that exploited domain-to-presentation
mappings automatically was Mecano [5]. This system used
domain models to generate form-based interfaces but
lacked any notion of a user-task model.

ADEPT [3], FUSE [4], Tadeus [8], and Trident [11] all
embed various forms of task models. The philosophy of
these systems was to try to automate as much as possible
the interface generation process from a user-task model.

Therefore, the systems embed their mapping method into
their knowledge-based approach. It should be noted that
although ADEPT does not explicitly represent mappings,
it does identify that the are abstract and concrete levels of
abstraction in an interface model.

HUMANOID [10] applied templates to bridge the domain-
to-presentation mappings, which proved to be an effective
way of building some types of interfaces. However, the
approach cannot be generalized outside of its intended
scope.

CONCLUSIONS
We have presented a general framework to solve the
mapping problem in model-based interface development
systems. We identify the nature of the mapping problem as
one of bridging levels of abstraction in an interface model.
By explicitly representing mappings in an interface model,
by providing tools that allow developers to set and inspect
the mappings, and by affording developers knowledge-
based approaches to prune the design space of potential
mappings, the MOBI-D interface development
environment enables the design of a wide variety of user
interfaces previously unattainable using model-based
technologies.

Clearly, MOBI-D deals with only a few of the interesting
mapping situations in any user interface design. However,
the MOBI-D environment defines a new approach and
philosophy to model-based systems, one that potentially
can lead to a much wider use of the technology.

Figure 6. An adaptive logistics interface designed with MOBI-D.

ACKNOWLEDGMENTS
The work on MOBI-D is supported by DARPA under
contract N66001-96-C-8525. We thank Hung-Yut Chen,
Eric Cheng, James J. Kim, Kjetil Larsen, David Maulsby,
Justin Min, Dat Nguyen, David Selinger, and Chung-Man
Tam for their work on the implementation and use of
MOBI-D.

REFERENCES
1. Foley, J., et al., UIDE-An Intelligent User Interface

Design Environment, in Intelligent User Interfaces, J.
Sullivan and S. Tyler, Editors. 1991, Addison-Wesley.
p. 339-384.

2. Janssen, C., Weisbecjer, C., and Ziegler, J. Generating
User Interfaces from Data Models and Dialogue Net
Application, in Proc. of InterCHI'93. 1993: ACM
Press.

3. Johnson, P., Wilson, S., and Johnson, H., Scenarios,
Task Analysis, and the ADEPT Design Environment, in
Scenario Based Design, J. Carrol, Editor. 1994,
Addison-Wesley.

4. Lonczewski, F. Providing User Support for Interactive
Applications with FUSE, in Proc. of IUI97. 1997: ACM
Press.

5. Puerta, A. and Eriksson, H. Model-Based Automated
Generation of User Interfaces, in Proc. of AAAI'94.
1994: AAAI Press.

6. Puerta, A. R. The MECANO Project: Comprehensive
and Integrated Support for Model-Based Interface
Development, in Proc. of CADUI96: Computer-Aided
Design of User Interfaces. 1996. Namur, Belgium.

7. Puerta, A. R. A Model-Based Interface Development
Environment. IEEE Software, (14) 4, July/August
1997, pp. 40-47.

8. Schlungbaum, E. Individual User Interfaces and
Model-Based User Interface Software Tools, in Proc. of
IUI97. 1997: ACM Press.

9. Szekely, P., Reflections on Beyond Interface Builders:
Model-Based Interface Tools, in Readings in
Intelligent User Interfaces, M. Maybury and W.
Wahlster, Editors. 1998, Morgan Kaufmann. p. 507.

10. Szekely, P., Luo, P., and Neches, R. Beyond Interface
Builders: Model-Based Interface Tools, in Proc. of
InterCHI'93. 1993: ACM Press.

11. Vanderdonckt, J. M. and Bodart, F. Encapsulating
Knowledge for Intelligent Automatic Interaction
Objects Selection, in Proc. of InterCHI'93. 1993: ACM
Press.

