
Custom-Tailored Development Tools for

Knowledge-Based Systems

Henrik Eriksson� Angel R. Puerta John H. Gennari

Thomas E. Rothenuhy Samson W. Tu Mark A. Musen

Section on Medical Informatics

Knowledge Systems Laboratory

Stanford University School of Medicine

Stanford, California 94305-5479, U.S.A.

October 2, 1994

Abstract

Prot�eg�e-ii is a development environment for knowledge-based systems. Prot�eg�e-ii

supports developers by providing a series of development tools. Dash, which is part

of the prot�eg�e-ii tool set, is a metalevel tool that uses domain ontologies (which are

models of domain concepts and relationships among concepts) as the basis for generating

domain-speci�c knowledge-acquisition tools. Domain experts use the tools that dash

generates to enter the knowledge required for problem solving. Dash generates target

tools in a series of design steps, and it uses sets of design rules as the basis for the

transitions among the design stages.

1 Introduction

During the 1980's, knowledge-based systems were heralded as a new type of software designed

to provide expert advice to end users. However, the development of knowledge-based systems

that are adequate and usable for the end users has proven more di�cult than expected initially.

Many researchers and practitioners have highlighted the problem of insu�cient integration

with other, preexisting software components. Although developers can solve many of these

problems by careful system design, the construction of knowledge-based systems is often

costly, and the problem-solving performance of the systems may be insu�cient for their tasks.

Even problems that are relatively simple for human experts may require complex software

�Present address: Department of Computer and Information Science, Link�oping University, S-581 83

Link�oping, Sweden
yPresent address: Psychologisches Institut der Universit�at Z�urich, FG Psychologische Methodenlehre,

Z�urichbergstr. 43, CH-8044 Z�urich, Switzerland

1



solutions. Developers require adequate tools to build such complex knowledge-based systems

and to maintain these systems.

Knowledge-acquisition tools are programs that elicit knowledge directly from domain ex-

perts, and produce knowledge bases, which are operationalized by a problem-solving method

[13]. Ideally, knowledge-acquisition tools should be general to provide support for know-

ledge acquisition in many application domains. In many cases, however, general knowledge-

acquisition tools provide insu�cient support, because these tools are too general with respect

to the application domain. Domain-speci�c knowledge-acquisition tools can provide adequate

support, but are often too costly to implement for a single development project. Metatools

can make domain-speci�c tools feasible economically by reducing signi�cantly the cost of

developing new domain-speci�c tools [2].

Prot�eg�e-ii is a development environment and a suite of tools that supports the de-

velopment of knowledge-based systems and software systems with knowledge-based compo-

nents [18]. The assistance provided by prot�eg�e-ii is twofold: Prot�eg�e-ii supports the

development of problem solvers from reusable components [4], and generates automatically

custom-tailored knowledge-acquisition tools for the development of knowledge bases [3]. The

development of problem solvers from reusable components is still the topic of ongoing re-

search, but the generation of knowledge-acquisition tools is emerging currently as a practical

technology.

The �rst generation of experimental metalevel tools [14, 1] for generation of knowledge-

acquisition tools was di�cult to use in practical development projects, because of the detailed

tool speci�cation required, and because of the limited generality of the metatool. A new

generation of metatools, however, provide viable solutions. The prot�eg�e-ii project shows

that the generation of specialized knowledge-acquisition tools is now maturing as a technique

for developing knowledge-based systems. We have used prot�eg�e-ii's tool generator, dash,

to produce knowledge-acquisition tools for several projects in our laboratory. In addition,

other sites are using dash for tool generation in their development work. We shall discuss the

principles for automated tool generation, and shall examine the techniques that dash uses to

generate knowledge-acquisition tools.

2 Approaches to Tool Generation

Automatic tool generation requires a speci�cation for the target tool. The structure of this

speci�cation can vary [2]. We shall discuss briey three approaches to tool speci�cation and

generation.

In the method-oriented approach, the metatool uses an instantiation of a problem-solving

method for a domain as the basis for the tool generation. Prot�eg�e-i [14] and Spark [12]

are examples of method-oriented metatools for generation of knowledge-acquisition tools. A

disadvantage of this approach is that the metatool cannot generate knowledge-acquisition

tools for domains that require other problem-solving methods.

The architectural approach uses an architectural model of the target tool as the basis for

the tool speci�cation. The developers provide detailed speci�cations for the components of the

target tool, such as the user interface, internal knowledge representation, and knowledge-base

generator. Dots [1] and sis [8] are examples of metatools that are based on the architectural

approach. The architectural approach is more general than the method-speci�c approach,

but it requires the developer to design the tool in detail and to de�ne the tool components (a

2



task that can be time consuming).

In the ontology-based approach, the metatool generates a knowledge-acquisition tool from

an ontology by mapping ontology de�nitions to user-interface elements in the tool design.

Prot�eg�e-ii and dash use the ontology-based approach. In the prot�eg�e-ii framework, the

input to the metatool is typically an application ontology, but the developer can use other

types of ontologies as input to generate other types of knowledge-acquisition tools (such as

method ontologies to generate method-speci�c tools). The ontology-based approach is more

general than the method-speci�c one (in the sense that the space of possible target tools is

much larger), but it is less general than the architectural approach. The principal advantage

of the ontology-based approach is that developers can specify knowledge-acquisition tools

readily, and that a preexisting ontology can be used as the basis for the speci�cation.

3 The PROT�EG�E-II Suite of Tools

Prot�eg�e-ii uses the notion of tasks, which are models of functionality required, and problem-

solving methods, which perform tasks. The developer can decompose problem-solving meth-

ods into subtasks, which can be accomplished by other methods or by mechanisms (which are

methods that the developer cannot decompose further) [18]. In the prot�eg�e-ii approach,

the developer selects a problem-solving method from a library of reusable methods, and con-

�gures the method by providing appropriate submethods for the selected method's subtasks.

Moreover, the developer de�nes the mappings required to translate the input and output of

the method to input and output of other methods in the application system. The retrieval

of problem-solving methods from the library, the organization of the library, and the con�g-

uration of reusable problem-solving methods for new tasks are di�cult principal obstacles to

method reuse, and are subject to ongoing research [7].

In addition to the problem-solving methods, the developer must de�ne the knowledge rep-

resentation that the problem solvers should operate on. Workers in Arti�cial Intelligence has

adopted the term ontology to describe a model of concepts and relationships [17]. Developers

can organize an ontology according to classes, slots, and slot properties (slot facets) similar to

the approach used in object-oriented modeling. In prot�eg�e-ii, we use an extension of clips

[16] as the basic ontology-de�nition language.

In the prot�eg�e-ii approach, we distinguish among domain, method, and application on-

tologies. Domain ontologies are models of domain concepts and relationships. These on-

tologies are reusable potentially across several application programs for the domain. For

instance, an inventory program and a design-con�guration program may share the same com-

ponent concepts and relationships. Method ontologies are ontologies that model concepts

relevant for a problem-solving method. For instance, the propose-and-revise method for con-

�guration problems incorporates the concepts of design constraint, constraint violation, and

constraint-violation �x [11]. (The propose-and-revise method proposes a tentative solution

and improves it by applying �xes that remove design constraints.) To reuse a method for

a domain, such as elevator con�guration, the developer must relate concepts in the method

ontology to corresponding concepts in the domain ontology. The method can then operate

on instances of the domain ontology through a mapping to method-speci�c instances, which

the method is designed for. For example, problem-solving concepts of the propose-and-revise

method can be related to concepts relevant for elevator con�guration. Typically, the method

ontology is domain independent, but method speci�c.

3



The prot�eg�e-ii approach uses the notion of application ontology to describe the special-

ization of a domain ontology to include method-speci�c concerns. The application ontology

consists of domain-ontology concepts relevant for the application system (e.g., concepts rele-

vant for elevator con�guration) and concepts relevant for problem solving (e.g., upgrade �xes

for elevator cables). The application ontology is not intended to be reusable across several

systems. In the prot�eg�e-ii approach, the application ontology is the starting point for

the generation of knowledge-acquisition tools rather than the domain ontology, because it

incorporates the concepts required by the target system.

The prot�eg�e-ii tool set includes mâitre, which is an interactive editor for ontologies.

Mâitre allows the developer to de�ne new classes. The developer can de�ne slots of classes,

and can edit class and slot facets (i.e., properties such as type and default value). Mâitre

provides a graphical user interface for the ontology editing, but stores ontologies in a textual

format, which is an extension of clips that incorporates additional class and slot facets used

in the generation of knowledge-acquisition tools. Developers use mâitre to develop domain,

method, and application ontologies.

Dash is a metalevel tool that generates automatically domain-speci�c knowledge-acquisition

tools [3]. Dash takes as input an application ontology developed in mâitre, and produces as

output a speci�cation of a knowledge-acquisition tool. Dash allows the developer to custom

tailor the interface of the knowledge-acquisition tool, and to store these custom adjustments

persistently.

The tool meditor is a run-time system for knowledge-acquisition tools that can read the

tool speci�cations output by dash, and can provide immediately an executable tool by instan-

tiating the speci�cations to appropriate user-interface windows and widgets. Figure 1 shows

a sample form from a knowledge-acquisition tool generated by dash and run by meditor.

The output of the knowledge-acquisition tool is a set of instances of the application ontol-

ogy. For example, the output from a knowledge-acquisition tool for elevator con�guration can

be instances of concepts, such as cable, motor, counter weight, and design constraint. To be

usable by a problem solver, these instances must be mapped to the method ontology, which the

problem-solver understands (e.g., instances of concepts such as variable, constraint, and �x).

Marble is a program that translates the instances produced by the knowledge-acquisition

tool to appropriate instances for the problem solver [5]. The translation process is guided

by a set of mapping-rule de�nitions provided by the developer. The current implementation

of marble is a prototype system, but we are working currently on an extended version of

marble that will handle generalized mappings in a more principled way than the current

version. Because it is possible to de�ne an ontology of mapping rules, we can generate readily

a knowledge-acquisition tool for such mappings by applying dash to this ontology.

Figure 2 shows the control panel for prot�eg�e-ii. This panel is designed to provide an

overview of the prot�eg�e-ii architecture, and to allow the developer to access the intermediate

data �les produced by these tools. In this panel, the tools are represented by icons organized

in a circle (to illustrate how design iterations can be performed). Icons for documents and

data �les are located in the outer circle. The normal work ow is that the developer creates

an application ontology in mâitre and generates a knowledge-acquisition tool in dash, which

the domain expert uses to create a knowledge base. The developer then de�nes the mapping

from the application knowledge base to the format required by the problem solver.

4



Figure 1: Sample form from a knowledge-acquisition tool. Physicians use this form to specify

clinical-trial protocols for AIDS treatment. Meditor manages the data entered in the tool,

and allows the tool user to save the data on �le, and to generate knowledge bases consisting

of instances of the application ontology.

5



Figure 2: The control panel for prot�eg�e-ii. The prot�eg�e-ii user use this panel to invoke

tools and to access �les produced by the tools.

6



EO generator

Layout subsystem

Widget composerSelector composer

Layout designer

Ontology parser

Dialog designer

EO file

Figure 3: Overview of the dash architecture. The ontology parser reads the input ontology.

The dialog designer analyzes the ontology de�nitions, and produces the dialog structure. The

ontology de�nitions and the dialog structure are the input to the layout designer. The layout

designer consists of the selector and widget composers (which are responsible for the selector

and widget designs, respectively) and the layout subsystem for the initial and custom-tailored

window layout. The output of dash is a �le of editor-ontology (EO) instances.

4 The DASH Architecture

The purpose of dash is to automate much of the design task for knowledge-acquisition tools,

and to relieve the developer from the burden of dealing with the often intricate details of user-

interface implementation for graphical user interfaces. Automated design allows developers

new to this type of tool design to build knowledge-acquisition tools with minimal training,

and allows developers with extensive experience at tool design to produce tools precisely and

rapidly. Automated detailed implementation reduces the number of bugs, and, therefore, the

testing, debugging, and maintenance costs for the tool.

We shall describe briey the major components of the dash architecture and the design

steps involved in tool generation in the dash approach. After analyzing the input ontology,

dash designs knowledge-acquisition tools by �rst generating an initial design automatically,

and then allowing the developer to custom tailor the design manually. Dash uses a hierar-

chical design approach to generate knowledge-acquisition tools. In dash, the dialog-designer

module �rst creates a high-level description of the editors and forms in the tool, and the

layout-designer module then instantiates these descriptions (Figure 3).

The dialog designer performs an important early design task, because, before dash can

generate forms by mapping ontology de�nitions to user-interface components, dash must

establish the forms to generate and the relationships among these forms. Moreover, the

layout designer must know the access paths from a form to other forms before it can render

the controls that will allow the user to access the subforms. Examples of such controls are

buttons, browsers, graphs, and pop-up lists of instances. Figure 4 shows a sample dialog

structure produced by the dialog designer.

The task of the layout designer is to instantiate the dialog structure produced by the dialog

designer. The layout designer traverses the dialog-structure graph and produces window

de�nitions for every node in the dialog structure. Furthermore, the layout designer maps

ontology de�nitions, such as slot data types, to appropriate user-interface components using

7



ProtocolList browser

Main menu

List browser Drug Eligibility criteria

Algorithm

Toxicity

Figure 4: A sample dialog structure for a knowledge-acquisition tool. The main menu provides

access to two list-browser windows. These list browsers allow the tool user to create drug and

protocol de�nitions, respectively. A protocol-de�nition window contains browsers for eligibility

criteria and toxicity, and provides access to an algorithm-de�nition window.

a set of tool-design rules. As part of the design process, the layout designer maps the slot

de�nitions to selectors [6], which are intermediate high-level representations of user-interface

widgets. Next, the layout designer instantiates the selectors to widgets, and lays out the

widgets on windows. The developer can then custom tailor the layout of the windows.

Custom adjustment is a powerful technique for adapting the user interface of target tools

to their users. However, it is often necessary to make changes to the input ontologies after

the developers have custom tailored the knowledge-acquisition tools. For instance, sometimes

developers discover aws in ontologies by examining the knowledge-acquisition tools generated

from them. If the developers design the target knowledge-based systems and knowledge-

acquisition tools incrementally, a series of extensions and modi�cations to the ontologies will

be required. Examples of such ontology changes are additions and deletions of classes and

slots in class de�nitions.

Dash relieves the developer from the burden of readjusting the target tools after changes

to the ontologies by supporting persistent custom adjustments. Dash stores the changes in

a database, and reapplies these adjustments when it regenerates the knowledge-acquisition

tools. Dash then allows the developer to make additional manual adjustments to the new

version of the target tool. Figure 5 illustrates the use of the custom-tailoring database. Dash

installs the adjustments stored in version n� 1 of the database, and produces, in addition to

the knowledge-acquisition tool, a new version n of the database.

When developers change input ontologies, dash must reapply the custom adjustments

that are relevant for the new ontology versions. Examples of such changes are slot additions

and deletions, and class additions and deletions. Dash uses class and slot names to match

the new ontology version and the records in the custom-tailoring database. As part of this

proccess, dash identi�es changes to the target tool caused by added and deleted classes

and slots, and takes appropriate actions, such as ignoring custom-tailoring information that

correspond to deleted classes and slots.

5 Design Rules

We can view the dash approach to tool generation as a series of mappings guided by sets of

design rules. Although we can sometimes treat the creation of the mappings as a one-step

8



Ontology DASH
Knowledge-
acquisition tool

nn–1

Figure 5: The custom-tailoring database. Dash uses the previous custom adjustments (if

any) as the basis for window layout, and stores new custom adjustments for later use (in

subsequent regenerations of the target tool).

process, dash actually �rst maps the data types to selectors and then maps the selectors to

widgets. The selectors are an important intermediate representation in dash's design process,

and they simplify the design rules for target tools.

5.1 Mapping Rules

Dash uses the data types of slot de�nitions in the input ontology as the basis for the de-

sign of appropriate selectors and widgets. The relevant slot data types are integer, oat,

string, symbol, and instance. For example, a slot of type integer can be de�ned as (slot

no-of-employees (type integer)). Furthermore, the developer can slots of multiple car-

dinality; that is, lists of data elements. For example, the slot de�nition (slot subdivisions

(type instance) (cardinality multiple) (allowed-classes division)) speci�es a slot

that holds a list of instances of the class division. In addition to the slot data types, the

developer can annotate the ontology de�nitions with information relevant for tool generation,

(e.g., requests for graph editors rather than list browsers).

Dash transforms that have numeric data types (integers and oating-point numbers)

to entry �elds for numbers and appropriate labels based on the slot names. Dash maps

numeric slots to numeric-�eld selections, and then expands the selectors to label and entry-

�eld widgets. Dash uses a similar approach to map slots of type string to text-entry selectors,

and to label and entry-�eld widgets.

Slots of type symbol are similar to slots of type string, except that certain characters (e.g.,

space) are illegal in symbol names. Also, slots of type symbol de�nitions can contain a list of

allowed symbols for the slot. If the developer provides a list of allowed symbols, dash maps

the slot to a selection selector (which de�nes a selection of one item from a list of items), and

later to a radio-button widget group or to a pop-up widget (which allows the target-tool user

to select one of the allowed symbols from the pop-up menu). The number of items to select

from determines the choice between radio-button and pop-up widgets. Dash maps slots of

type boolean to selection selectors that use the items true and false, and then to check-box

widgets.

Let us consider an example of these mappings. Figures 6 and 7 show a sample class

de�nition and the resulting form window produced by dash, respectively. In the class

9



(defclass corporation (is-a USER)

(slot company-name (type string))

(slot no-of-employees (type integer))

(slot blue-chip (type boolean))

(slot chapter-11 (type boolean))

(slot manufacturing-type (type symbol)

(allowed-symbols discrete process))

(slot subdivisions (type instance)

(cardinality multiple)

(allowed-classes division))

)

Figure 6: The sample de�nition of the corporation class.

corporation, the type of the slot company-name is string. Dash maps this slot to a text-

entry selector, and to label and entry-�eld widgets (as shown in Figure 7). Similarly, dash

maps the slots no-of-employees, blue-chip, chapter-11, and manufacturing-type to

their corresponding selectors and widgets. Note that the slot manufacturing-type results in

a radio-button group that allows the user to select between discrete and process, rather than

a pop-up menu, because there are only two items to select between.

Dash maps slots of type instance to di�erent selectors and widgets depending on the value

of other slot facets. If the developer speci�es a slot of type instance, cardinality single (i.e., a

single instance, not a list of instances), and provides an allowed class for the instance pointed

to, dash maps the slot to a button selector, and to a push-button widget, which provides

access to an editor for an instance of the class speci�ed (according to the dialog structure).

If the developer speci�es a slot of type instance, cardinality multiple, and provides a list of

one or more allowed classes for the instance pointed to, dash maps the slot to a browser

selector, and to a list-browser widget with control-button widgets (see Figures 6 and 7). The

target-tool user uses this browser to add new instances to the list, and to edit instances in

the list (through editors according to the dialog structure). If the developer speci�es a slot as

type instance, cardinality single, and marks the slot as an instance pointer, dash maps the

slot to an instance-pointer selector and to a pop-up widget, which allows the target-tool user

to select an instance (of the allowed classes) from a list of instances entered in the target tool.

In the dash approach, graph editors are similar to list browsers in the sense that they

provide access to a collection of instances. Graph editors are a sophisticated type of browsers

where the items are represented by nodes that can be positioned on the graph canvas. More-

over, the target-tool users can relate the items to each other by creating links among them. If

the developer speci�es a slot of type instance, cardinality multiple, and requests a graph editor

(through a slot facet), dash maps the slot to a grapher selector, and to a set of widgets that

constitutes the grapher. For example, Figure 8 shows the de�nition of the workflow class,

which includes the slot flow-graph. Note the slot facet (ka-specification grapher),

which instructs dash to generate a graph editor, rather than a list browser. Figure 9 shows

the resulting graph editor. The grapher widget set consists of a grapher canvas, a set of add

buttons for new nodes, a delete button, and an edit button. The meditor tool run-time

system allows the target-tool user to edit graph nodes by double clicking on them. This oper-

10



Figure 7: A sample form generated by dash. This form is based on the de�nition of the

corporation class (Figure 6).

ation will open an editor for the instance that the graph node represents. In certain domains,

domain experts must be able to edit properties of links (such as preconditions for transitions).

In out approach, links among nodes can represent instances (if speci�ed by the developer in

the ontology). By double clicking on the links, the target-tool user can edit the link instances.

Dash can map slots of cardinality multiple (i.e., lists) to table selectors, and to matrices of

widgets. Matrices, however, are not supported by clips directly. The developer can indicate

that a list of integers, for example, should be edited as a matrix in the target tool. Dash

and meditor assume that the upper left-hand corner of a matrix corresponds to the �rst

element in the list. Moreover, Dash and meditor take advantage of the size of the matrix

(as speci�ed by the developer) in mapping the list to the matrix, and vice versa. There are

some restrictions on the allowed element data types for lists edited by matrices. Currently,

(defclass workflow (is-a USER)

(slot name (type string))

(slot flow-graph (type instance)

(cardinality multiple)

(allowed-classes personal-activity group-activity

external-activity composed-activity)

(ka-specification grapher))

)

Figure 8: The sample de�nition of the workflow class.

11



Figure 9: A sample form with a graph editor. The add buttons allow the tool user to add new

nodes to the graph. The tool user can de�ne relationships among the nodes by connecting

them with links. Furthermore, the tool user can edit node and link de�nitions by selecting

them and clicking on the edit button.

the element data types supported are integer, oat, string, boolean, and symbol.

5.2 Layout Rules

When dash has completed the instantiation of the widgets, it invokes the layout subsystem.

This subsystem uses a relatively straightforward layout algorithm, because the layout is in-

tended as a starting point for manual custom adjustments. The layout subsystem uses a set

of rules for determining the initial size of the widgets, and the relative widget positioning for

widget sets (e.g., list browsers). The layout algorithms then positions the widgets in rows

and columns on the window, and aligns them to a grid. Finally, the layout algorithm deter-

mines the size of the window. In addition to layout of new windows, the layout subsystem

supports incremental layout of widgets added to windows custom tailored previously (due to

slots added to the ontology). The incremental-layout algorithm positions new widgets below

the preexisting widgets, and resizes the window to accommodate the new widgets.

The hierarchical design approach and the separation of function (selectors) and implemen-

tation (widgets) make it easier to maintain dash's design rule base. The dash developer can

add support for new data-entry devices in the target tool. For instance, the dash developer

can add pop-up menus for small integers by mapping the numeric-entry selector to a di�erent

widget implementation for small integers (e.g., for integer slots where the minimum value is

zero and the maximum value is ten). In the next section, we shall discuss tool support for

maintenance of dash and the design rules.

12



MEDITOR

Tool definition

DDE

DASH

Tool user

DASH developer

Input ontology

Figure 10: The relationships among dash, dde, and meditor. Dde can be viewed as a

meta-metatool for the dash developer.

6 The DASH Development Environment

The dash system and the design rules used by dash evolved gradually over time, because of

the increasing use of and the requirements on the target tools. At one point, the maintenance

of existing dash functionality required much of the resources available for dash development.

Thus, we found it di�cult to extend dash further, and to add new functionality. This situation

warranted a new approach to the development and maintenance of dash.

The Dash Development Environment (dde) is a system that assists developers in the de-

sign, implementation, and maintenance of dash (Figure 10). Dde allows the dash developer

to navigate and edit the dash design-rule base, run diagnostic tests, and inspect graphi-

cally the intermediate design representations generated by dash. Moreover, dde supports

the con�guration of a mapping method that performs transformation among design stages in

dash. The mapping method uses a set of rules to map tentative tool-design representations

to re�ned representations.

Figure 11 shows the structure of the mapping method. The method builds an index of

the elements in the input structure, and performs an abstraction of key input features based

on the input and index. The method uses information from the abstraction step to guide

the generation of an intermediate representation, templates, from the input structure. The

templates represent tentative elements for the output structure. The method then uses the

templates as the basis for the generation of the target structure, which is the output of the

method. The method generates target-structure elements by instantiating the templates. Sets

of mapping rules de�ne the mapping between the stages in the mapping method. Dash uses

four instances of this mapping method as the basis for tool design. The �rst instantiation

generates the dialog structure from the ontology. The second instantiation generates selectors

from the ontology and from the dialog structure. The third instantiation maps the selectors to

appropriate widgets, and the fourth instantiation generates the �nal output from the widgets.

13



Target
structureTemplates

Input
structure

AbstractionIndex

Figure 11: The structure of the mapping method modeled by a data-ow graph. The method

indexes the input structure, and abstracts key features of the input structure. The method

then uses the index and abstraction information to perform the mapping from the input struc-

ture to templates (for the target structure). Finally, the method instantiates the templates

to produce the target structure, which is the output of the method.

Dde allows the developer to edit the mapping de�nition and to navigate rule sets and

other de�nitions. The dde user interface provides a main menu that illustrates the data-ow

relationships in dash. The user can access mapping de�nitions, ontologies, and subsystems

of dash. The graphical navigation facilities of dde helps the developer to locate rapidly the

code segment responsible for a certain functionality in the system.

Dde's subsystem for diagnostic tests allows the developer to run test cases up to certain

points in the generation process of dash. These test cases consist of input ontologies designed

to test various tool-design rules in dash. Dde includes a set of common test cases, and the

developer can specify additional ontologies as test cases. The latter feature is useful for

debugging dash problems that occur with speci�c input ontologies (perhaps provided by

dash users).

After a test is completed, dde will provide an interactive test protocol that the dde user

can use to analyze the result of the test run (Figure 12). The interactive protocol provides

graphical inspectors for intermediate design representations generated by dash. The dde

user can inspect these structures at di�erent levels of granularity to verify that the mapping

steps are working correctly. By running problematic ontologies as test cases in dde, the

dash developer can inspect the intermediate results of the generation process, and can isolate

rapidly any problem in the mapping steps of dash.

We designed dde as an application-speci�c development environment for dash (analo-

gous to domain-oriented knowledge-acquisition tools). The dde user interface incorporates

concepts relevant to the dash architecture and for the instantiations of the mapping method.

Dde has proven to be helpful in the development and maintenance of dash, and has allowed

us to extend dash with fewer resources. The number of bugs in dash has decreased, and the

time required for debugging has been reduced signi�cantly.

In principle, the class of application-speci�c tools that dde represents can be used to

support the development and maintenance of other types of software. Potentially, metalevel

systems, such as prot�eg�e-ii, can be used to assist the development of application-speci�c

tools. Although the current version of prot�eg�e-ii cannot generate tools such as dde, because

14



Figure 12: Interactive test protocol generated by dde. This panel allows the dde user to

inspect intermediate design representations, such as the dialog, selector, and widget structures,

produced by dash in the test run.

the dash tool-design rules and the meditor tool run-time system are designed for knowledge-

acquisition tools, a similar approach and architecture can be created for other classes of

custom-tailored tools.

7 Tools Generated

By using application ontologies as the basis for generation of knowledge-acquisition tools, the

developer can specify knowledge-acquisition tools for a wide variety of domains. To illustrate

the design space of the target tools, we shall mention briey some of the knowledge-acquisition

tools developed with prot�eg�e-ii.

One of the �rst application domains for which we generated knowledge-acquisition tools

was the Sisyphus room-assignment problem [9]. In this example problem, the task is to assign

o�ce workers to rooms in an o�ce building under certain constraints (e.g., room size and

location in accordance with the workers job description). The Sisyphus room-assignment

problem is a standard problem used by researchers in knowledge acquisition to compare

di�erent approaches to knowledge acquisition, knowledge representation, and problem solving.

The application ontology for the room-assignment task is based on the concepts per-

son, room, and professional role. Only the professional-role class is relevant for knowledge

acquisition, because persons and rooms are run-time input data to the system. From the per-

spective of knowledge-acquisition-tool support, the room-assignment task is relatively simple.

A knowledge-acquisition tool consisting of only a few forms is su�cient to create the know-

ledge base. A browser of professional roles provides access to a form for speci�cation of room

requirements for each professional role.

To test prot�eg�e-ii on a more di�cult task than the room-assignment problem, we devel-

oped a system that assists users in choosing appropriate equipment to rent when moving (e.g.,

trucks and trailers). This example is more complex than the room-assignment problem, but it

is less complex than a realistic task for a knowledge-based system. The knowledge-acquisition

tool for this system acquires speci�cations for rental equipment (e.g., trucks, trailers, and

boxes), variables that are involved in the con�guration process (e.g., weight and cost), and

constraint rules and �xes. The application ontology for this system consists of 12 classes, and

the knowledge-acquisition tool generated consists of 11 forms.

15



The Vertical Transportation (vt) task is a standard problem based on an existing knowledge-

based system for elevator con�guration [11]. Analogous to the room-assignment task, the

Sisyphus vt problem is a well-documented task that is used by researchers to compare

knowledge-acquisition and problem-solving approaches. The vt task, however, represents

a signi�cant problem that requires a knowledge-based system of signi�cant size and complex-

ity. The implementation of the original vt system was supported by salt [10], which is a

method-speci�c knowledge-acquisition tool that acquires knowledge for the propose-and-revise

method. We use the same problem-solving method (propose and revise) to perform both the

rental-equipment task and the vt task [19]. Although the method ontology is the same, the

domain and application ontologies (and, thus, the knowledge-acquisition tools) di�er. The

application ontology for the vt system consists of 78 classes, and the knowledge-acquisition

tool generated consists of 38 forms. The resulting knowledge base consists of 674 instances of

concepts in the application ontology.

T-Helper [15] is a system that assists physicians by providing computer-based support

for protocol-directed therapy. The T-Helper system is based on a set of protocol de�nitions

that represent the context in which the protocol can be used, and de�ne the algorithmic

procedure (skeletal plan) of the protocol. The T-Helper knowledge-acquisition tool allows

the expert physician to enter information about the protocol in forms and to de�ne the

algorithm graphically [20]. The current version of the application ontology used for tool

generation consists of 76 classes, and the knowledge-acquisition tool generated consists of 25

forms. The T-Helper knowledge base is currently under construction in our laboratory.

The knowledge-acquisition tools for the room-assignment and rental-equipment tasks are

relatively simple. However, when the complexity of the knowledge-base design increases,

the advantage of generating tools automatically increases as the burden of implementing and

maintaining such tools manually becomes unmanageable. The knowledge-acquisition tools for

the vt and T-Helper applications show how generated tools assist knowledge acquisition

for relatively complex tasks.

8 Summary

Domain-speci�c knowledge-acquisition tools enable domain specialists to create knowledge

bases with minimal assistance from system developers. This tool support is often essential

to the initial success and subsequent maintainability of knowledge-based systems, because of

the complexity and size of the knowledge bases. Developers can custom tailor domain-speci�c

tools for the requirements of individual users, and of development projects by using a metatool

to generate knowledge-acquisition tools automatically.

The prot�eg�e-ii system shows that the generation of knowledge-acquisition tools from

application ontologies is a valid approach. However, in addition to the metatool dash, the

developer must have access to tools for editing ontologies, and to a run-time system for the

knowledge-acquisition tools generated. If the developers reuse a preexisting problem-solving

method, the output of the target knowledge-acquisition tool must be mapped to the format

used by the method. Compared to its predecessors, prot�eg�e-ii provides a solid platform

for the generation of domain-speci�c knowledge-acquisition tools. We have used prot�eg�e-ii

successfully for knowledge acquisition in several projects, and the prot�eg�e-ii suite of tools

has provided signi�cant support and reduced the development time considerably.

We plan to extend prot�eg�e-ii by providing graphical library functions for reusable

16



problem-solving methods, by improving the support for mappings among ontologies, and

by providing additional design support for user interfaces. So far, we have concentrated

our research on tools for the development of knowledge-based systems. However, many of

the principles for tool generation apply to the development of other types of software as

well. In our continued research, we plan to generalize results from knowledge-acquisition

tools for knowledge-based systems, and to explore how metatools can support the software-

development process by automating the generation of project-speci�c tools.

Acknowledgements

This work has been supported in part by grants LM05157 and LM05208 from the National

Library of Medicine, by grant HS06330 from the Agency for Health Care Policy and Research,

and by gifts from Digital Equipment Corporation and from the Computer-Based Assessment

Project of the American Board of Family Practice. Dr. Musen is recipient of National Science

Foundation Young Investigator Award IRI-9257578.

We thank John W. Egar, Yuval Shahar, and Eckart Walther for valuable discussions and

suggestions on generation of knowledge-acquisition tools in prot�eg�e-ii. On-line informa-

tion about prot�eg�e-ii and dash is available through a World-Wide-Web (WWW) service

(http://camis.stanford.edu/protege/).

References

[1] Henrik Eriksson. Metatool support for custom-tailored domain-oriented knowledge ac-

quisition. Knowledge Acquisition, 4(4):445{476, 1992.

[2] Henrik Eriksson and Mark A. Musen. Metatools for software development and knowledge

acquisition. IEEE Software, 10(3):23{29, 1993.

[3] Henrik Eriksson, Angel R. Puerta, and Mark A. Musen. Generation of knowledge-

acquisition tools from domain ontologies. International Journal of Human{Computer

Studies, in press.

[4] Henrik Eriksson, Yuval Shahar, Samson W. Tu, Angel R. Puerta, and Mark A. Musen.

Task modeling with reusable problem-solving methods. Arti�cial Intelligence, in press.

[5] John H. Gennari, Samson W. Tu, Thomas E. Rothenuh, and Mark A. Musen. Mapping

domains to methods in support of reuse. International Journal of Human{Computer

Studies, in press.

[6] Je� Johnson. Selectors: Going beyond user-interface widgets. In Proceedings of the

ACM Conference on Human Factors in Computing Systems (CHI '92), pages 273{279,

Monterey, CA, May 3{7 1992. ACM, New York.

[7] Werner Karbach, Marc Linster, and Angi Vo�. Models, methods, roles and tasks: Many

labels|one idea? Knowledge Acquisition, 2(4):279{299, 1990.

[8] Atsuo Kawaguchi, Hiroshi Motoda, and Riichiro Mizoguchi. Interview-based knowledge

acquisition using dynamic analysis. IEEE Expert, 6(5):47{60, October 1991.

17



[9] Marc Linster, editor. Sisyphus'92: Models of Problem Solving, Technical Report 630,

Gesellschaft f�ur Mathematik und Datenverarbeitung (GMD), St. Augustin, Germany,

1992.

[10] Sandra Marcus and John McDermott. SALT: A knowledge acquisition language for

propose-and-revise systems. Arti�cial Intelligence, 39(1):1{37, 1989.

[11] Sandra Marcus, Je�rey Stout, and John McDermott. VT: An expert elevator designer

that uses knowledge-based backtracking. AI Magazine, 9(1):95{112, Spring 1988.

[12] David Marques, Geo�roy Dallemange, Georg Klinker, John McDermott, and David Tung.

Easy programming: Empowering people to build their own applications. IEEE Expert,

7(3):16{29, June 1992.

[13] John McDermott. Preliminary steps toward a taxonomy of problem-solving methods. In

Sandra Marcus, editor, Automating Knowledge Acquisition for Expert Systems, chapter 8,

pages 225{256. Kluwer Academic Publishers, Boston, MA, 1988.

[14] Mark A. Musen. Automated support for building and extending expert models. Machine

Learning, 4:349{377, 1989.

[15] Mark A. Musen, Robert W. Carlson, Lawrence M. Fagan, Stanley C. Deresinski, and

Edward H. Shortli�e. T-HELPER: Automated support for community-based clinical

research. In Proceedings of the Sixteenth Annual Symposium on Computer Applications

in Medical Care, pages 719{723, Washington, D.C., November 1992.

[16] NASA. CLIPS Reference Manual. Software Technology Branch, Lyndon B. Johnson

Space Center, NASA, Houston, TX, 1991.

[17] R. Neches, R. Fikes, T. Finin, T. Gruber, T. Senator, and W.R. Swartout. Enabling

technology for knowledge sharing. AI Magazine, 12(3):36{56, Fall 1991.

[18] Angel R. Puerta, John W. Egar, SamsonW. Tu, and Mark A. Musen. A multiple-method

knowledge-acquisition shell for the automatic generation of knowledge-acquisition tools.

Knowledge Acquisition, 4(2):171{196, 1992.

[19] Thomas E. Rothenuh, John H. Gennari, Henrik Eriksson, Angel R. Puerta, Samson W.

Tu, and Mark A. Musen. Reusable ontologies, knowledge-acquisition tools, and per-

formance systems: PROT�EG�E-II solutions to Sisyphus-2. In Proceedings of the Eighth

Ban� Knowledge Acquisition for Knowledge-Based Systems Workshop, pages 43.1{43.30,

Ban�, Canada, January 1994.

[20] Samson W. Tu, Henrik Eriksson, John H. Gennari, Yuval Shahar, and Mark A. Musen.

Ontology-based con�guration of problem-solving methods and generation of knowledge-

acquisition tools: Application of PROT�EG�E-II to protocol-based decision support. Ar-

ti�cial Intelligence in Medicine, in press.

18


