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ABSTRACT
We describe the methodology and architecture of a
knowledge-based, interactive visualization system that
enables physicians and medical support personnel to draw
conclusions from heterogeneous time-oriented clinical data.
Our system employs domain-specific ontologies to produce
temporal and statistical abstractions of data, and also as the
basis for semantically-based browsing and visualization.
This builds on previous work in data mining, temporal
reasoning, and information visualization, but offers
fundamental advantages over any isolated approach, by
leveraging each off the others.  We performed an evaluation
of a prototype, leading us to conclude that users can indeed
use the system to perform such semantically-based
browsing in a reasonable amount of time.
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INTRODUCTION
While medical informatics has come a long way in
harnessing computational power to display spatially
oriented clinical data (e.g., volume rendering CT scans),
this type of clinical data represents only a small fraction of
the amount of information available on a patient. For non-
spatially-oriented data like blood test parameters, attending
physicians and medical support personnel regularly wrestle
with paper-based patient charts.

A more generally applicable perspective from which to
view clinical data is as a heterogeneous set of time series.
That is, many domains within health care require decisions
based on recognition of temporal patterns within patients’
records.  As it is a long and tedious process for doctors to

filter the data by hand in order to isolate particular
problems, it is an ideal task for a computer to perform this
abstraction of data into more useful forms.  This abstraction
of data is highly idiosyncratic, and relies on the vast store of
knowledge required of doctors.  Thus, a domain-specific
knowledge base must be developed which captures the
forms and parameters of this abstraction process.

Once this knowledge base is in place and abstraction of
patient data has been accomplished, the next step is to
visualize and navigate through this information.  Because
doctors are used to performing these abstractions
themselves, they will tend to distrust the “conclusions”
drawn by the computer, and thus also seek an “audit
trail”—detailed explanations for the abstractions they see
on the screen.  They want to see both the raw data on which
the abstractions are based and the mechanism by which they
are derived.  In order to discern temporal patterns and
glitches in the audit trail, they want to make comparisons
between various abstraction levels.  This is more than just
“drilling down” in the database sense; this is the type of
information that is usually found in a knowledge base.
Thus, both the temporal abstraction itself and the navigation
require a domain-specific knowledge base.

Our project’s purpose is to provide this kind of richer
navigation.  The target groups for our interface design are
physicians and medical support personnel, each
encompassing a wide range of computer and computer
programming experience.  However, we believe the
architecture is general enough to encompass any domain in
which temporal abstraction is of prime importance.

Outline
We begin with a description of previous work in related
areas.  After that, we proceed to a description of our
solution and the development cycle for our interface, all in
the context of an example application in the domain of
protocol-based patient care.  Following this is a description
of our evaluation of a prototype implementation, and results
of our testing.  Finally, we discuss possible extensions of
our system and areas of further research.



RELATED WORK
Ahlberg and Shneiderman’s starfield displays [1] and
Lamping, Rao, and Pirolli's hyperbolic trees [6] represent
attempts to navigate through graph structures or databases
using spatial metaphors.  These techniques are useful for
emphasizing and browsing relations between data objects,
but have limited applicability when a primary object of
visualization is the information contained within the
objects, as is the case with medical data.

Other work in focusing lenses and movable filters [3]
addresses the visualization of non-spatial or textual data.
This is useful for approaches such as ours, but falls short of
the domain-specific interpretations that provide our system
with its increased explanatory power.

Zhou and Feiner [13] give a taxonomy of data
characteristics for visualization, some of which is
duplicated in our model.  However, by concentrating on
temporal relations and adding domain knowledge, our data
characterization scheme is more detailed, and can therefore
display and filter on more specific relations of interest to
the user.

Golovchinsky et. al. [5] describe a system which
automatically  generates graphics such as timelines based
on domain knowledge.  The system uses knowledge much
the same way as our visualization module does, but stops
short of employing this knowledge for navigation as well.

Our visualization technique draws on previous work by
Cousins and Kahn, and Plaisant and her colleagues.
Cousins and Kahn [2] described a graphical semantics for
certain operations on temporal intervals that we employ in
our visualization process, but did not address the problems
of navigating temporal intervals.

In their Lifelines project, Plaisant, et. al. [7], present a
visualization technique that bears a striking resemblance to
our own.  However, they do not implement the semantic
navigation capabilities that lie at the core of our system nor
does is their system capable of automatically forming
temporal abstractions of patient data.

SOLUTION & APPLICATION
Our system is called KNAVE: Knowledge-based
Navigation of Abstractions for Visualization and
Explanation.  The knowledge base, abstraction generator,
navigation/explanation engine, and visualization unit are
each separate modules (see Figure 1) which we will
describe in turn.

In order to provide some context to our description of this
system, we first describe an example sub-domain of health
care on which we based our evaluation: protocol-based
patient care.

Protocol-based patient care
In medical clinics, protocols are used regularly in the
treatment of seriously ill patients.  Often they are developed
because the treatment is experimental or so dangerous to

the patient that they are only slightly less harmful than the
diseases they are designed to treat.  They are agreed upon
by a body of experts in the particular field of medicine to
which it applies.  They include schedules for the
administration of drugs, schedules for the performing of
tests, indicators of danger to the patient, and procedures in
case something goes wrong.  The schedules and indicators
are what we attempt to model in our ontology, providing a
tool to support a doctor’s decision to take someone off the
protocol or initiate a change in protocol.

Résumé and knowledge bases
Our system abstracts data using a temporal inference engine
called Résumé [9] and its associated architecture.  Résumé
forms its abstractions according to the knowledge structures
of a given domain.  Such a structure is called an ontology
and is defined by a domain expert working with a
knowledge acquisition tool, a tool for entering an ontology
into a program.

A Résumé ontology is specially-constructed for the purpose
of temporal abstraction.  Elements in the domain are
grouped into one of three categories: contexts, actions, and
parameters.  Parameters are generally measured data and
abstractions of that data.  They can take on discrete or
continuous values. Like parameters, actions can have
different values, and can be abstracted into other actions.
For instance, a shot of insulin has a particular dosage which
can serve as its value, and may be part of a treatment which
is treated as another event.  Finally, contexts are periods of
situations in which abstract parameters and actions have a
certain interpretation.  An example of this is the context of
the effects of chemotherapy, during which lab data which
may normally be considered alarming are considered part of
the normal course of treatment.  Contexts can have sub-
contexts, such as the period of effect of a certain drug
during a chemotherapy protocol.

The Domain Ontology Server (see Figure 1) provides the
ontology to KNAVE.  One of the components of the
Domain Ontology Server is the Temporal Abstraction and
Visualization (TAV) Server, which provides knowledge
about how to make abstractions in this domain, and various
parameters to optimize visualization of these abstractions.
An example of temporal abstraction knowledge is the
classification function from a parameter value to the value
of a higher-level abstraction.

Résumé is encompassed within a temporal mediator [12]
called Tzolkin.  The term temporal mediator is a short way
of saying that Tzolkin mediates between a database and a
program that makes temporal queries (KNAVE in this
case).  The answer to the query might involve computing
abstractions not held in the database, in which case it uses a
temporal abstraction module (Résumé in this case) to
produce these abstractions.  Tzolkin also contains a module,
called Chronus, for performing temporal pattern matching
directly on the abstractions contained in the Tzolkin
database.  Thus, Tzolkin also has a module which processes



SQL or Résumé-style queries, and refers it to Chronus,
Résumé, or, if the query is immediately answerable, to the
database query engine itself.  In terms of our conceptual
framework, Tzolkin is a Temporal and Statistical
Abstraction (TSA) Server, meaning that it provides the
particular values and time intervals of the various
abstraction types to KNAVE.

KNAVE architecture
With the help of the TSA and Domain Ontology Servers,
KNAVE implements the visualization and
navigation/explanation functions of the system.  The
computational module handles the navigation and
explanation, while the graphical interface determines the
visualization of the data (see Figure 1). The graphical
interface was developed as a separate entity, in order to
maintain adaptability to a wide range of domains through
modular design.

TSA server

DB

KNAVE

Computational
Module

Graphical
Interface

Domain
Ontology
Server

TAV
Server

End
User

Domain
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Figure 1. The architecture of KNAVE.  TAV stands for Temporal
Abstraction and Visualization.  TSA stands for Temporal and
Statistical Abstractions.  DB refers to the patient database of raw
facts. KA stands for Knowledge Acquisition.

Computational module
The computational module integrates the knowledge
obtained from queries to the TSA and Domain Ontology
Servers.  It maps widgets to queries, and query results to
widgets.  Its navigation model is described later in the
section entitled "Integration of User Task and Domain
Models."

Using MOBI-D
In developing this interface, we followed a model-based
approach, using the MOBI-D (MOdel-Based Interface
Designer) [8] interface development environment.  The
MOBI-D development cycle has three stages.  The first
stage is the elicitation of user task and domain models.  The
second stage is the integration of these two models to

produce a framework for the interface.  The third stage is
the construction of a presentation and dialog.  We describe
each stage in the process of building our current system.

Elicitation of user task and domain models: user task
The user task model was developed using a module of the
MOBI-D environment called U-TEL [11].  A potential user
of the system enters a plain text description of the task they
wish to accomplish with the interface, and then proceeds to
create an outline of its basic components.  This outline is
then used as a specification for the user task model.

Some key aspects of the user task model we developed with
this tool are: navigation along multiple dimensions derived
from an ontology of temporal abstraction, frequent
communication of the underlying temporal inference
processes to the user, and the need for statistical as well as
temporal navigation and abstraction.

The navigation dimensions are divided into two categories:
syntactic navigation and semantic navigation.  Syntactic
navigation covers all forms of navigation that do not require
domain knowledge.  There are several forms of syntactic
navigation with which we are familiar: zooming and
scrolling in the time dimension, zooming individual charts
along the parameter value dimension, scrolling through
charts already displayed, and collapsing and expanding of
graph hierarchies and ontology components.

Temporal semantic navigation is the key innovation of our
system.  There are three dimensions to navigate along for
both parameters and actions, and they are independent of
domain.

The first involves moving up and down relations in the
domain’s ontology, such as abstraction hierarchies. We
refer to this as semantic drill-down.  Referring to Figure 3,
a user might see Bone Marrow Toxicity values and wonder
what information they were derived from.  She would
navigate down the abstraction hierarchy, seeing
Granulocyte State values, and then values for Granulocytes.
She finds she has reached raw values, and cannot drill any
further.

The second involves changing the time unit (temporal
granularity).  In many systems, this just re-labels the x-axis,
but KNAVE uses domain knowledge to determine whether
it is more appropriate to show a statistical abstraction
instead of the values themselves.  For instance, a user
switches the time unit from hours to years.  Suddenly, the
blood sugar measurements (taken several times a day) look
more like noise than the discrete values he was looking at.
It becomes more useful to show a distribution of values for
each year, indicating mean, variance, and other statistical
parameters.  The knowledge of what temporal granularity
change to make this adjustment and which surrogate
abstraction to use depends on the domain, even the
particular parameter in the domain (e.g., it makes sense to
look at individual height values at the granularity of years).



The third dimension involves changing contexts.  A user
may want to view a given abstract parameter, say White
Blood Cell Toxicity, within different contexts to get an idea
of what the patient’s status is under various simultaneous
treatments. This gives the doctor an idea of the interaction
between treatments. These dimensions define non-
Euclidean spaces, and as such, are difficult to navigate
using spatial metaphors.

Elicitation of user task and domain models: domain
In the production of the domain model, we were careful to
keep separate three domains.  The first is the visualization,
navigation, and explanation of abstractions.  The second is
the formation of abstractions of time-oriented data.  The
third is the formation of abstractions of medical time series
data.

The first model we developed from doctors using U-TEL.
The second model, the domain model for temporal
abstraction, is the core of the Résumé system, and thus
already existed.  The third model was elicited in a separate
stage, through the use of a knowledge-acquisition tool
tailored for use with Résumé.  In practice, both the general
knowledge common to all medical applications (drugs,
tests, etc.) and the specific ontology for protocol-based care
was acquired at the same time, but they are theoretically
distinct, and could just as easily have been acquired as
separate ontologies.

Integration of user task and domain models
The integration of the two models pivots around the
concept of semantic zoom operators [2].  The Résumé

temporal-abstraction system determines possible
dimensions along which to explore abstraction levels.  The
task model determines typical actions and types of
information the user needs.  We interpret these actions as
sequences of simultaneous steps along various dimensions
to explore.  The process of developing an integrated model
is then reduced to the construction of all necessary
sequences, and each sequence is defined as a semantic
zoom operator and mapped to interface components.

We integrate the domain model concept of sending queries
to a temporal inference system with the task model concept
of moving along various dimensions of abstraction by
simply treating them as one and the same thing.
Shneiderman describes this dynamic query method in [10].
It involves sending a series of rapid queries as users move
along a navigation axis.  Ahlberg and Shneiderman [1],
Fishkin and Stone [3], and Goldstein and Roth [4] have all
used this method for interactive navigation tasks. Unlike
previous applications of the dynamic query method,
KNAVE does not need to navigate continuous dimensions,
but need only jump between discrete levels of abstraction.
The assumption is that users will not need to rapidly flip
through many levels of abstraction at animation speeds, as
different levels of abstraction seldom have the level of
visual coherency necessary to make this a profitable action.

Constructing An Interface
The interface (see Figure 2) is composed mainly of two
entities: tree browsers and time chart objects.  These
correspond to the two elements of domain knowledge and
temporal abstraction contained within Résumé’s domain

Figure 2. The KNAVE interface, showing the Parameter, Intervention, and Context navigation windows and the main
window, showing the parameter Bone Marrow Toxicity in the context of the PAZ treatment protocol.



model.

Six to eight small tree browsers (depending on user
configuration settings) present different views on the
context, event, and parameter ontologies, allowing the user
a wide variety of navigation possibilities by simply clicking
on one of the words in any tree browser. In each navigation
window, there are one or two browsers for showing
relations between parameters at various abstraction levels.
This enables the user to drill-down using the semantics of
the domain, which is a major aspect of the user task model.

Time charts are the atomic graphical entities that present all
abstractions and time-oriented data in KNAVE.  They are
composed of four types: time interval charts for displaying
discrete abstractions, scatter plots for displaying raw data,
hybrid charts for displaying continuous abstractions, and
histograms and other specialized charts for displaying
statistical information.

A chart of any of these types can perform a number of
operations.  These include scrolling both along the time
axis and the value axis, magnifying in either direction,
reordering itself among the currently displayed charts, and
jumping to the next level of abstraction along a variety of
semantic axes.  In addition, charts of the first three types
(what we call temporal charts) can be overlaid or combined
with any other temporal chart.

The charts are composed in a panel in the main window
(Figure 2).  There are three panels in this window: the
Context panel, the Action (or Interventions) panel, and the
Parameter (or Empirical and Derived Data) panel.  These
map to the fundamental division between context, actions,
and parameters in the domain model.  The panel currently
being explored is enlarged to take up most of the window,
while the others are shrunk to show a minimal amount of
information.  This is an implementation of change of focus
between actions and parameters, as described in the user
task model.  Within each panel, graphs are stacked
vertically.  They remain temporally aligned to allow users
to make comparisons between different parameter values.
Again, this is one of the key requirements of the user task
model.

EVALUATION
After completing a prototype of the system, we evaluated it
in order to assess the viability of our knowledge-based
approach, and elicit suggestions for future versions.

We asked seven potential users to evaluate our system.  The
group included both experienced physicians with decades
of clinical experience, a student who had just finished his
residency, medical students, and a medical informatician
with medical knowledge comparable to that of typical
medical support staff.  The group also represented both
experienced computer programmers as well as casual users
of only a handful of applications.  The group included both
male and female participants.

Each potential user was given an introduction to the main
features of the system (ten minutes, plus time for questions).
They were then asked to perform three short tasks, and
provide any comments they might have about problems
with the system or modifications of the design.  A single
patient file was constructed from actual cases of
administrations of an AIDS treatment protocol and bone
marrow disease protocol, and users were asked to extract
information about this patient.

The tasks were designed to cover a wide range of activities
possible with the KNAVE system, including all of the most
common ones.  Thus, one task was to find "if an occurrence
of at least one week of at least Grade 2 Bone Marrow
Toxicity (in the PAZ graft-versus-host disease protocol
context) exists in the abstractions of a particular patient’s
data, and if so, on which data is that abstraction based."
Bone Marrow Toxicity is a higher-level abstraction that
characterizes the effect of chemotherapy on the bone
marrow.  PAZ stands for prednisone/azathioprine, two
drugs used in the protocol, and is a treatment for chronic
graft-versus-host disease, a complication of a bone marrow
transplant. This query is typical of the kind given in the
elicited user task model.  It forces the users to use the
explanatory capabilities of the KNAVE system.  One stage
in the completion of this task is shown in Figure 3.

Figure 3. In the PAZ context, Bone Marrow Toxicity values are
derived from Granulocyte State values, which are derived from

values of Granulocytes.

A second task emphasized the context-changing mechanism
of the system.  The question put to the users was, "can you
find any intervals of pancytopenia or polycythemia as
expressed by the parameter ’General Hematological State’ in
the context of the administration of the CCTG AIDS-



therapy protocol?"  The idea here is to see if users could
grasp that the context changed, as well as how to change it.
Pancytopenia and polycythemia are abnormal values for
this parameter.  General Hematological State is a summary
of all the hematological (blood-related) data measured for
the purposes of the treatment.  This parameter and
supporting information is shown in Figure 4.

Figure 4. In the CCTG context, General Hematological State is
derived from two parameters: White Blood Cells and Hemoglobin.

The final task was to "find the distribution of values of the
parameter ’Hemoglobin State’ in the CCTG context over the
last 80 days."  The purpose of this last test was to highlight
the statistical abstraction (contrast with temporal
abstraction), visualization, and navigation aspects of
KNAVE.  Hemoglobin State is a categorization of
hemoglobin measurements (hemoglobin is the oxygen-
binding protein contained in red blood cells).

Efficiency observations
Not only were all users able to find the requested
information without guidance, but they were also able to do
it quickly.  Completion times for the sum of the three tasks
ranged from 20 seconds to 3 minutes, with six of the users
completing the tasks in under 90 seconds.  For six of the
users, the first task took the longest, roughly half the time,
and the second almost as long.  The last user took longer to
perform the second task than the first.  All seven took only
a few seconds to complete the third task.

It would be unfeasible to compare these times to
completion times for human-knowledge-based abstraction
and decision-making.  The reason is that few doctors are
familiar enough with these experimental protocols to
interpret the raw data in any reasonable amount of time.
For our example domain, there are six raw data types and

fourteen abstraction types, with one-to-three-dimensional
derivation tables for each.  Clearly, the time it takes to learn
a new protocol and mechanics of forming various
abstractions is far longer than the 3 minutes the slowest user
of our system took to perform the tasks.  Similarly, even
given a tool for computing and visualizing temporal
abstractions, but without the semantic navigation
capabilities of KNAVE, non-experts lack the knowledge of
how abstract parameters are related.  Navigating in this way
requires users to pick from a list of unorganized parameters,
making semantic drill-down impossible for the non-expert.
For the first task, the one emphasizing the drill-down
mechanism, the slowest of our seven users navigated in a
similar way, each time choosing new parameters from lists
of raw data and abstract parameters, rather than following
abstraction links.  Even so, this user still benefited from
some structuring of the data provided by the domain model,
and thus was better off than someone without a navigation
system at all.

Even if we were to find enough experts to carry out such a
comparison, they would then fail to represent our entire
target group.  One of the goals of KNAVE is to provide
decision support for doctors who lack the extensive
experience with a given protocol to be able to interpret
patient data on the run, yet have sufficient general
knowledge to understand the medical semantics behind the
explanations provided by the system.

Summary of comments
Users were enthusiastic about the features of the system,
with some emphasizing its explanatory capabilities.  Two
commented that the statistical abstractions provided much
needed data.

Other comments seemed to emphasize the advantages of
multiple navigation modes.  We found that each user
followed a different path through the dialog.  Anticipating
the possibility of widely varying needs for different user
groups, we chose flexibility over consistency in many of
our design decisions.  The rationale is that various user
groups can be identified and profiles developed which
capture the preferred navigation mode for those groups.  In
the prototype used for these evaluations, we did not
specialize for particular groups, and therefore the system
still maintained maximum flexibility.  We believe the short
time-to-completion for the tasks given is related to the
users’ ability to choose whichever mode of navigation they
learned the quickest.

Trends
The particular paths different users took through the dialog
did not seem to have any correlation to the particular
demographic group divisions we defined at the start of this
Evaluation section.  While it is always questionable to talk
about correlation with a sample set of seven, it was
nevertheless obvious that there were five distinct methods
of navigating the interface among our seven users.  One
used the Query Dialog exclusively, one used the query



dialog only once and the tree-browser interface the rest of
the time (except for the third task which required the use of
the popup menu), one used only the pop-up menus and the
Query Dialog.  Two used the context tree-browser to
change contexts, but otherwise used the pop-up menus to
navigate. Finally, two used a mixture of the various
navigation methods to perform the first two tasks.

Another interesting trend which emerged was the ability of
the five younger users (all in their twenties) to complete
each task significantly quicker than the two older users
(experienced physicians in their fifties).  This points to at
least partial success in our goal of providing decision
support for less experienced practitioners.  After the
evaluation, one of the younger users speculated that the
older doctors have had longer to get used to inspecting
scatter plots of primitive data directly, and thus are less
susceptible to having their conclusions handed to them.
However, this is only speculation, as the evaluation was not
designed to draw such conclusions.

EXTENSIONS
Application to other domains
We have already developed ontologies for other domains,
both medical domains like children’s growth, diabetes, and
non-medical ones like traffic control.  We have also
successfully formed temporal abstractions of data using
these ontologies.  These three domains will stretch the
capabilities of our current implementation of KNAVE.

Diabetes and smart databases
Diabetes is different from protocol-based care in that,
instead of a large number of raw data parameters and a
couple levels of abstraction of those parameters, it has very
few parameters (typically just blood sugar levels) and a few
actions (like insulin administration and mealtimes), but a
complex set of abstractions, involving periodic patterns
(such as low blood sugar levels on weekends only).
Furthermore, since diabetes patients typically take blood
glucose measurements four times daily, databases that cover
whole life histories are large.  Thus, we are looking into
problems of scalability with our current implementation.
The solution to these problems is to shift part of the load of
performing temporal inferences to the database itself—a
smart database approach [12].

Children’s growth and domain-specific graphics
Children’s growth monitoring brings up limitations in our
graphical representation of data. While we believe our four
graph types capable of displaying any type of time-oriented
data for which an ontology exists, another issue to consider
is whether they present information in the most intuitive
way.

Even physicians who do not specialize in children’s growth
are familiar with the type of graphic known as a growth
chart (an example is shown in Figure 5).  The y-axis
corresponds to a common measure of a child’s growth (in
this case height), while the x-axis shows the child’s age.

Several arcs of solid or dashed lines show growth curves for
various percentile ranges (percentile given at the bottom left
of each curve).  For instance, 97% of all Chinese girls of
the sample set used to make this chart had heights on or
below the top curve throughout ages 6 through 18. The
location and spacing between these growth curves are
adjusted by restricting the sample set according to factors
such as gender, race, and the previously observed growth
curve of the particular child.  The physician can tell at a
glance how the child is doing by simply locating the child’s
height and age on the grid.

As you can see, such a chart is fundamentally different from
the scatter plots and timelines we use in our system.  While
the x-axis still represents time, the chart itself does not
represent the patient in question, but rather a complex
statistical abstraction that determines typical ranges for a
population of which the patient is a part.  As such, our
patient-centered data model cannot be made to display such
a chart without further specialization of the interface to the
domain of children’s growth monitoring.

Figure 5. Growth chart for Chinese girls.

Traffic control and multi-dimensional navigation
Traffic control requires the ability to make abstractions
both in time and across distances.  An example is the
attempt to spot a traffic jam as it begins to develop, but
before all traffic flow has stopped.  One must not only
consider car velocities over given time intervals, but also
over different stretches of road.  Strictly speaking, KNAVE
is neither restricted to the domain of health care nor to the
methodology of temporal reasoning.  When applying the
Résumé system to the domain of traffic control, we refer to

Figure 6. Growth chart for Chinese girls.Figure 6. Growth chart
for Chinese girls. Figure 6. Growth chart for Chinese girls.



it as a linear abstraction method.  This is because it doesn’t
matter what physical dimension Résumé is forming
abstractions along—it could be the distance along a
highway just as easily as time.

Of course, this presents challenges for navigation and
visualization.  While it is perfectly possible to display such
information in the current system, it is not clear that this is
the most intuitive or powerful way.  Intervals of time could
be placed alongside intervals of distance, but simultaneous
two-physical-dimensional navigation is not currently within
the system’s abilities. Here it is important to distinguish
between navigating physical dimensions and navigating
semantic dimensions.  The latter refers simply to the three
dimensions of non-Euclidean navigation described in the
earlier User Task Model section.  To navigate two physical
dimensions simultaneously, KNAVE would need to
navigate six dimensions simultaneously (assuming actions
and parameters are not simultaneously navigated).  We
need a method of visualizing n-physical-dimensional data
(where one or more of these dimensions are more important
than others) while semantically navigating (n-1)-physical-
dimensional information spaces.  We need to navigate one
less dimension than we visualize, because we need not
semantically navigate the parameter value dimension.  For
example, in the traffic control domain, we would ideally
visualize three dimensions (time, location along roads, and
a third parameter such as the velocity of automobiles), but
would only need to simultaneously navigate in the two
dimensions of time and location.

Need detailed domain knowledge
The system relies heavily on detailed knowledge provided
by a domain expert.  Seen another way, this is where the
system derives its navigational fluency and explanatory
ability.  The ontology only needs to be entered once, and
once entered, can be tweaked to accommodate individual
doctors’ preferences.  We see no way to achieve this level
of fluency without the help of a domain expert.

CONCLUSIONS
We have developed a system that performs knowledge-
based abstraction of time-oriented information, visualizes
these abstractions with their raw data, and enables
semantically-based navigation of that information.  This
architecture provides doctors and medical support
personnel the ability to draw conclusions from patient data
in a framework defined by other doctors.  Our evaluation
has shown that it properly enables such a navigation
method, and presents information in a more quickly
comprehensible form than an existing method of
interpreting clinical data.
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